
Appendix A

Examples of realistic coherence

functions of acoustic sources

A.1 Introduction

This appendix supplements some of the statements made throughout the review of coherence theory
that are relevant for acoustics and hearing (�8)�primarily in the sections about realistic acoustic
sources (� 8.3.2) and room acoustics (� 8.4.2). The overarching goal of the examples in this ap-
pendix is to demonstrate that partial coherence is prevalent in relatively ordinary conditions�a claim
that is repeatedly made throughout this work. As information supporting this claim could not be
conveniently gathered from available literature, it was deemed instructive to generate the required
data using available recordings. The interpretation of some of the e�ects is not always straightfor-
ward, especially since several critical factors go into every analysis�frequency-dependent coherence,
nonstationarity of the sources, reverberation time, integration time of the coherence function, the
analysis �lter, and more. The challenge in interpretation is exacerbated because the relative weight-
ing and exact interplay between these factors are unknown with respect to hearing. Nevertheless, it
is the hope here that the �gures below will serve the immediate purpose of showing how real-world
acoustic �elds are not black or white�they are neither coherent nor incoherent, but are generally a
mixture of both: they are partially coherent.

The basic relation used throughout this work to obtain the coherence function is the correlation
function:

Γ(r1, r2, τ) =
1

2T

∫ T

−T

p∗(r1, t)p(r2, t+ τ)dt (A.1)

which is integrated over a �nite duration 2T that in the limit of T → ∞ converges to the ensemble
average value, if stationarity is satis�ed. When r1 = r2 = r, Γ(r, r, τ) is referred to as the self-
coherence function, and then Eq. A.1 assumes the form of a standard autocorrelation function. Eq.
A.1 is normalized by the root mean square of both signals according to:

γ(r1, r2, τ) =
Γ(r1, r2, τ)√

Γ(r1, r1, 0)
√
Γ(r2, r2, 0)

(A.2)

to obtain the complex degree of coherence, γ(r1, r2, τ).
In most of the following analyses, we are interested in the transition between coherence (γ = 1)

and incoherence (γ = 0). In the room acoustic and psychoacoustic literature, it was indirectly
assessed using the e�ective duration, which is de�ned as the duration for a 10 dB drop from the
peak of the autocorrelation function, which is always coherent at τ = 0 and drops for larger lags.
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434 A.2. White noise and the cohering e�ect of two �lter types

This measure has been shown to correlate with various subjective measures, but the choice of
10 dB does not seem to have been justi�ed in literature and appears to be somewhat arbitrary. In
contrast, the coherence time as is de�ned in coherence theory (�8.2.4) is computed at the half power
point (-3 dB). This duration also corresponds to the point at which the coherent and incoherent
components in the total (partial) coherence function are exactly equal, according to Eq. 8.22:
Icoh/Iincoh = |γ(r1, r1, τ)/|(1− |γ(r1, r1, τ)|). Therefore, we shall make a distinction between the
coherence time (-3 dB) and the e�ective duration (-10 dB). As a working hypothesis, we will assume
that complete (subjective) coherence is obtained for delays shorter than the coherence time τ < ∆τ
and subjective complete incoherence is obtained for delays longer than the e�ective duration τ > τe.
The broad margin in between corresponds to subjective partially coherent sound. The exact cuto�
in auditory relevant measures is, of course, unknown at present.

A notable and known pattern that repeats in the following measurements is that the coherence
time decreases with frequency. This is a corollary of the 1/f-like distribution of the power spectrum
of di�erent sources of physical noise, which also characterizes speech and music loudness and pitch
�uctuations (Van Der Ziel, 1950; Voss and Clarke, 1975).

Several sound examples from the recordings that are analyzed throughout are found in the audio
demo directory /Appendix A - Coherence/.

A.2 White noise and the cohering e�ect of two �lter types

Although the autocorrelation function is routinely applied in acoustics to broadband sources, the
physical coherence function that carries information about interference between sources is well de-
�ned only for narrowband signals. In order to obtain a narrowband approximation that is required to
get meaningful results out of the temporal-spatial coherence functions, it is necessary to bandpass-
�lter the various broadband acoustic signals. However, the choice of �lter can signi�cantly in�uence
the output coherence function and is therefore not completely arbitrary (�8.2.8). To illustrate this ef-
fect, we shall compare the white-noise coherence function for di�erent Butterworth and gammachirp
�lters. The Butterworth �lters are designed to maximize the �atness of the passband magnitude,
but are characterized by relatively slow rise time and frequency-dependent group delay in the �anks
(Blinchiko� and Zverev, 2001, 109�117). The gammachirp �lters are the standard model for the
auditory �lters (Patterson et al., 1987; Irino and Patterson, 1997). They are faster than the But-
terworth �lters and account for the asymmetry of the passband. However, they are modeled using
stationary signals (pure tone and broadband maskers) and probably have an incorrect phase response
(Lentz and Leek, 2001) that may not square well with some transient nonlinear characteristics. The
passband in both cases is set according to the equivalent rectangular bandwidth of the auditory
�lters (Glasberg and Moore, 1990):

ERB = 0.108f + 24.7 Hz (A.3)

for frequency f in Hz.
White noise, in theory, has a zero coherence time in the limit of in�nite bandwidth of the noise.

However, as was proven in � 8.2.8 and was originally shown in Jacobsen and Nielsen (1987), the
choice of �lter bandwidth a�ects the measurement, and hence, the apparent coherence of the source.
This is illustrated in Figure A.1. The pre-�ltered autocorrelation of a 5 s pseudo-random white noise
is shown in all plots as the blue trace. The negative half plane of the autocorrelation is omitted
due to its symmetry. The autocorrelation of Eq. 8.84 was calculated with T = 0.1 s and 50%
overlap between analysis frames and then averaged over all frames. The envelope of the obtained
autocorrelation that appears in each plot was extracted using the magnitude of the Hilbert transform
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of the average autocorrelation function on all frames (Ando et al., 1989; D'Orazio et al., 2011).
The coherence time ∆τ (seen on the plot top right corners) was calculated by �nding the duration
it took the envelope to drop by 3 dB from its peak value. The e�ective duration was found by
�tting a linear curve to the logarithmic envelope of the coherence function between 0 and -5 dB
and extrapolating it to -10 dB, in accord with the standard de�nition of e�ective duration (Ando,
1985).

In all plots, the coherence time ∆τ and e�ective duration τe are smaller than 0.15 ms179.
Butterworth �ltering (2nd-, 4th-, 6th-, and 8th-order) is displayed in plots A, C, and E for center
frequencies of 100, 500, and 2500 Hz, respectively. In all cases, the coherence time (and e�ective
duration) increases as the center frequency decreases. Both ∆τ and τe are approximately doubled
when the �lter order is increased from 2nd- to 6th-order. The e�ect of an 8th-order �lter appears
more unpredictable, though. The gammachirp �ltering (plots B, D, F) is more predictable and has
much shorter times associated with it. However, the �lter orders are not directly equivalent and
(the standard) 4th-order gammachirp results in approximately the same coherence time and e�ective
duration values as the 2nd-order Butterworth, in all cases.

Regardless of the speci�c type and order of �lter selected, the e�ect on coherence is unmistakable,
as even white noise that enters as a completely incoherent signal, leaves the �lter as partially
coherent. This is an important result that will be used at several points in the main text.

The 6th-order Butterworth �lter will be used throughout this appendix, as it has a known phase
response and has su�cient frequency resolution to re�ect features visible in the broadband spectrum.
Its downside appears to be that at short coherence times and frequencies, the �lter dominates the
coherence function response and makes it excessively long�it likely exaggerates the low-frequency
signal coherence time. Therefore, the values below should be interpreted in a comparative and
relative sense rather in the strict absolute manner.

A.3 E�ect of integration time

Examples of the e�ects of the integration time of the correlation integral (Eq. A.1) are shown in
Figure A.2 for an acoustic source that is presented in �A.6.1�a saxophone that tends to produce
long notes of high coherence. The e�ect of varying the integration constant duration T between
25 and 400 ms is frequency dependent in the saxophone example, since longer T results in longer
coherence time at low frequencies (plot A), while it is maximized with T = 100 ms at the midrange
frequency (plot B), and is una�ected at the highest frequencies (plot C). The e�ective duration is
somewhat di�erent, as it is more sensitive to �uctuations. The shortest integration times (25 and
50 ms) are clearly too short to capture signi�cant portions of the signal that can reveal relevant
coherent patterns. The longest integration times (200 and 400 ms) do not necessarily add critical
information to the analysis that is maybe more suitable for sustained and stationary sounds.

A.4 Stationarity and nonstationarity

It was mentioned several times in the text that the assumption of stationarity does not hold for
typical acoustic signals that function as auditory stimuli. Nonstationarity complicates the analysis
and sets many of the results obtained using the stationarity assumption as limiting cases. In the
�gure below (A.3), the nonstationarity of the seven sound samples that have been used in this

179The coherence time is de�ned as the measured at the half-maximum point of the main lobe, whereas the e�ective
duration is measured when the function drops to -10 dB. However, the latter is evaluated through extrapolation from
-5 dB. See �A.5 and �8.3 for further details.
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Figure A.1: Demonstration of the cohering e�ect of two di�erent types of �lters with band-
widths set according to the ERB in Eq.A.3, in four orders each. On the right are band-pass
Butterworth �lters of 2nd, 4th, 6th, and 8th order (standard bandpass orders are always even).
On the left are Gammachirp �lters of 2nd, 3rd, and 4th orders. White Gaussian noise of 5 s
was used as signal and the integration time was 100 ms, in all cases.
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Figure A.2: The e�ect of the integration time T on the same autocorrelation function as is in
plots A, B, and C, for a 6th-order Butterworth �lter, which has been used as a standard in this
appendix. The coherence time ∆τ and e�ective duration τe are displayed for all conditions.
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appendix and are presented in the subsequent sections, is analyzed using a simple measure. Kapilow
et al. (1999) proposed three stationarity indices to facilitate various algorithms of speech processing,
which can produce severe artifacts if used to process sound segments that are nonstationary (mainly
phonemic boundaries). The simplest index proposed in the paper (C1

n in Kapilow et al., 1999) is
based on the root mean square (RMS) level di�erence between consecutive analysis windows of the
sound:

NS =
|pn − pn−1|
pn + pn−1

(A.4)

where pn refers to the RMS level of the pressure in time frame n, which was set here to be 100
ms long. When the di�erence term in the numerator is 0, the signal does not vary in level, which
entails stationarity. If it maximally varies, NS is 1. Therefore, it seems appropriate to think of this
measure as a nonstationarity index rather than a stationarity index.

In Figure A.3, the plots on the left refer to the four sources used in �A.5 and the plots on the
right to the other three sources that are used in � A.6.1. The vibraphone note (plot A)�being
tonal and sustained�appears stationary as NS ≈ 0. In plots B, D, and F, the nonstationarity of
pseudorandom white noise is displayed in black and shows zero nonstationarity, as expected. All
other examples are nonstationary to di�erent degrees, but musical sounds (vibraphone, saxophone,
singing) appear to be more stationary than others. Speech and laughter have particularly erratic
nonstationarity patterns. In the case of the sources on the right of Figure A.3, alternative microphone
positions were all plotted for comparison and exhibit reasonably close �gures, which implies that
moderate reverberation does not have a strong e�ect on the inherent stationarity of the signal.
In fact, in some cases the remote positions appear more nonstationary on average than the near
position (tom drum), whereas it is the opposite in other cases (singing).

The nonstationarity estimated in the various cases suggests that using stationary coherence
function of the form of Eq. A.1 is not strictly correct. This equation assumes that the correlation
operation is time invariant, so that the signals can be compared (correlated) at any two points t1
and t2 and produce the same results. This gives rise to the time-invariant time delay variable τ .
However, the nonstationarity entails time dependence, so relevant signals have to be evaluated with
the two time coordinates instead. For simplicity, we do not pursue this approach here, but show
only some examples of the time-dependent e�ective duration in the next section.

A.5 Four narrowband coherence-time examples

From �8.3.2, it appears that a relatively fragmentary sample of e�ective durations of various acoustic
sources is provided in literature, and almost none of acoustic coherence times. Critically, the available
reports have exclusively focused on the autocorrelation of the full (broadband) spectrum, which is
useful in the discussion of pitch and broadband periodicity, but produces di�culties in interpreting
nonstationary broadband sounds. Broadband autocorrelation peaks may correspond to di�erent
sounds associated with speci�c sources (e.g., certain musical instruments in an ensemble), or within
sources when their spectra are complex and comprise multiple modes. As the auditory system
decomposes the broadband signal to narrowband channels, there may be some information that
cannot be garnered from such broadband analyses. Therefore, in order to anchor the subsequent
discussions with relevant data, narrowband autocorrelation analysis is provided for four acoustic
sources.

The narrowband autocorrelation curves in the next four Figures (A.4, A.5, A.6, and A.7) were
all computed using identical methods as in �A.2, and are displayed in a uniform format. The
center frequencies were selected by analyzing the spectrum (plots I). This was done in order to
have examples that contrast di�erent coherence time characteristics in di�erent bands. The median
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Figure A.3: The nonstationarity index of the seven sources used throughout the appendix,
according to Eq. A.4. The sources were analyzed in 100 ms consecutive frames. On the right
hand side, each source is analyzed in all four microphone positions available, which generally
showed similar patterns. For comparison, the black curves on the right-hand �gures (B, D,
and F) shows the nonstationarity index of pseudo-random white noise of identical duration,
which approaches zero with NS ≈ 0.005.
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value of the e�ective duration τe values are printed in plots B, D, F, where changes are shown along
the duration of the recording. The corresponding narrowband �ltering was achieved with 6th-order
bandpass Butterworth �lters, set with the equivalent rectangular bandwidth of auditory �lters with
the center frequency (Eq. A.3).

Both ∆τ and τe are dependent on the choice of the integration time T . The particular choice
of T = 0.1 s produced values that subjectively re�ected the author's impression of coherence from
listening to the sounds. However, di�erent choices of T would retain the relative di�erences between
the di�erent coherence functions, as was seen in �A.3. The spectrum of the sound was obtained
using the same time frames, using fast-Fourier transform (FFT) with 4096 points (plots I). Finally,
the broadband autocorrelation is displayed in plots J along with its associated e�ective duration.
Corresponding audio demos to the samples that are presented in this analysis are found in the demo
directory /Appendix A - Coherence/Narrowband coherence/.

Figure A.4 shows the analysis of a sustained complex tone (B4 = 494 Hz, 0.7 s) of a vibraphone180

in four frequency bands. The fundamental and the second octave overtone (1986 Hz) were selected
as the most coherent modes (plots A�B and E�F, according to the spectrum in plot J), whereas two
other frequencies (1100 and 5800 Hz) that are not associated with apparent overtones are plotted
in C�D and G�H. The coherence times are an order of magnitude longer in overtones (∼45 ms)
than in non-overtone frequencies (∼1�3 ms). The audio version of the fundamental sounds almost
indistinguishable from a pure tone, whereas the overtone has a subtle timbral variation in its attack,
despite a very small (4 ms) decrease in mean ∆τ (but not in the running τe) compared to the
fundamental. For the 1100 Hz (plots C and D), the mean ∆τ is much shorter (3.5 ms) despite
a long τe (147 ms), which reveals a step in the corresponding e�ective duration curve (plot B). It
is also audible in the faint recording, which starts with a clunky noise-like attack sound before it
becomes more tonal. The last frequency (plots G and H) has much shorter ∆τ and τe (< 2.5 ms),
which indeed sounds like noisy-clicky sound with no discernible pitch.

The second sound analyzed in Figure A.5 is musical but not tonal�a large (22�) ride cymbal
mounted on a stand that was struck with a drumstick in an unsteady rhythm. It was recorded in
near-�eld and dry studio conditions. Cymbals are characterized by high modal density and distinct
high-frequency attack sound that are excited by the drumstick. The lowest eigenfrequency (290 Hz,
plots A and B) gave coherence time that is comparable to the vibraphone modes (43 ms), which
nevertheless sounds like a hollow tone�somewhat less clear and steady than a pure tone�which
never decays signi�cantly between hits. The next frequency band (2315 Hz, plots C and D) sounds
dirtier and retains an audible indication for the drumstick hits with variable impact levels, although
it is still largely sustained, with shorter coherence time (9.8 ms). The last two frequencies are of
very short coherence time (0.4 ms) and are neither tonal nor sustained, as the impulsive hits are
distinctly heard. The highest frequency (13 kHz, plots G and H) sounds like faint dirty clicks. In this
case, the decrease in coherence time with frequency is also re�ective of the decrease in the decay
time of high frequency modes in cymbals (Fletcher and Rossing, 1998, 652�655).

The third sound (Figure A.6) is a 3 s female-laughter recording done in an audiometric booth
in near-�eld conditions. Its spectrum (plot I) does not reveal clear peaks and indeed none of the
narrowband recordings resembles laughter, suggesting that laughter may be described more faithfully
as a modulated broadband sound than using speci�c normal modes, or that the modal excitation is
too nonstationary to be modeled in the way presented here (cf. Bachorowski et al., 2001). Relative
agreement in the decrease rate of both coherence time and e�ective duration was obtained in all
frequencies, where the coherence time dropped from about 12 ms at 100 Hz to 0.6 ms at 6 kHz.
In general, it is evident that low frequencies have longer coherence times than high frequencies,

180A xylophone-like instrument with tuned metallic bars that produce tones of sharp attack and long sustain. The
sound is produced with soft mallets.
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Figure A.4: Autocorrelation of a vibraphone note (B4 = 494 Hz) of duration 0.7 s, recorded
in near-�eld in a dry room. The integration time is T = 0.1 s. The average autocorrelation
curves are plotted on a dB scale. The coherence time (∆τ) is the -3 dB point on the Hilbert
envelope of the coherence function. The e�ective duration (τe) is extrapolated to the -10 dB
on the envelope (see text). Bandpass �ltering was used to obtain narrowband autocorrelation
curves with center frequency as marked in plots A, C, E, and G and bandwidth equal to the
equivalent rectangular bandwidth of a corresponding auditory �lter. The corresponding plots
B, D, F, and H give the running e�ective duration and its median value for that frequency
band. The frequencies were selected from the spectrum (plot I), where they are marked with
triangles. The broadband autocorrelation function appears in plot J.
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Figure A.5: Autocorrelation of a ride cymbal being played with a drum stick for 10 s, recorded
with a close microphone in a dry studio. The measurement details are given in Figure A.4
and in the text.
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Figure A.6: Autocorrelation of female laughter of 3 s duration, recorded in a standardized
audiometric booth. See measurement details in Figure A.4 and in the text.
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Figure A.7: Autocorrelation of male speech of 12 s duration, recorded in a standardized
audiometric booth. See measurement details in Figure A.4 and in the text.
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although it depends also on the particular signal contents, which seem to be highly variable, judging
from the running e�ective duration plots.

The fourth and last sound (Figure A.7) is a 12 s male-speech recording done in the same
conditions as the female laughter from Figure A.6. The spectrum (plot I) is rich with resonances,
but only few that are prominent. Therefore, an attempt was made to pick frequencies that display
the largest variance in coherence time. At 161 Hz (plots A and B), the coherence time is 13 ms and,
as can be heard in the recording, it is clearly amplitude- and frequency-modulated�the latter as a
result of prosodic changes of the fundamental frequency. At 516 Hz (plots C and D), the �ltered
recording sounds more speech-like with amplitude-modulated noisy carrier that is hardly tonal. Here
the mean coherence time (6.7 ms) is much shorter than the e�ective duration median (40 ms).
Shorter coherence time may correspond to the atonal timbre of this sound. This impression is
stronger at 1500 Hz (plots E and F), where no clear peaks are observed in the spectrum, the mean
coherence time is very low (2.4 ms), and the recording sounds like a deeply amplitude-modulated
narrowband buzz. This is exacerbated in the last band (6000 Hz, plots G and H), where the
modulated buzz is less deep and more sustained, but sounds more like a guiro than speech.

In all cases, the broadband autocorrelation (plots J in the �gures) gives only partial informa-
tion about the source, which masks any distinction between coherent and incoherent parts it may
have. This is perhaps not surprising, because the autocorrelation in coherence theory is strictly
a narrowband measure. So, in both speech recordings, the broadband coherence time estimate is
conservative, in that it estimates the speech to be less coherent than it may actually be. This can
be true especially for voiced phones. In contrast, the musical vibraphone note is estimated to be
more coherent than not�e�ectively neglecting any noise-like incoherent components of the timbre.

Another recurrent observation about the data is that the running and median autocorrelation
functions occasionally yield di�erent coherence time estimates, which should be ∆τ ≈ 3τe/10 for
a `well-behaved' exponentially decaying self-coherence curve. While the nonstationary coherence
function �ne structure is captured by the running autocorrelation, it is often too erratic to be truly
useful, whereas the mean and median values appear to correspond to higher-level perception of
the overall sound. Either way, these di�erences underline the nonstationarity of even the simplest
acoustic narrowband sources.

A.6 The e�ects of room acoustics on coherence

It is instructive to examine a few concrete examples of sounds whose coherence properties are
a�ected by reverberation. As was stressed throughout the main text, the degree of coherence of
the acoustic source can be a�ected by a number of factors. The primary concern in the examples
below is to explore how the relative degree of coherence varies between di�erent sources, frequency
bands, and recording positions. Three sets of recordings are tested throughout: a �oor tom drum181,
a tenor saxophone, and a male voice singing a three-word melody. Each set was recorded in four
positions within the same large studio, with di�erent high-quality microphones. The computational
methods of the various functions are identical to those presented in �A.5, but this time we present
the mean coherence time and e�ective duration as a function of frequency.

Unlike the samples in the previous section, the signal-to-noise ratio of the following samples was
not always high. Thus, apparent incoherence may be the result of sounds that are truly unrelated
to the source�either noise or altogether di�erent sources.

181The largest drum of the drum set, except for the bass drum.
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A.6.1 E�ect of position and frequency

All the sound samples used below were recorded in a large studio (V ≈ 800 m3) with medium
reverberation time T60 ≈ 1 s. The walls and ceiling were treated with heavy absorption and each
instrument was recorded using various microphone positions. One was always close (the �near�
position), one was positioned somewhere in the room to capture more of the reverberant �eld
(�far�), and another was positioned in a much smaller room that was connected through an open
doorway, but far away from the source (�out�). For the tom drum, there was another position
that was not as close as the �near� position and picked up the radiation from above the drum (the
'`above� position). For the singing and saxophone, another microphone was placed right over an
open grand-piano soundboard, close to the strings, which may have resonated with the ambient
radiated sound.

Audio demos that correspond to the samples in the analysis are found in �/Appendix A -
Coherence/Room acoustics/.�

Figure A.8 shows the autocorrelation of the �oor toms that were played for 3.5 s. The hi-hat
cymbal was being played throughout as well, as can be heard in the above position. However, it was
less dominant in all other recordings and nearly inaudible in the near position. For clarity, only the
autocorrelation envelope is shown in plots A, C, and E. As can be seen in the spectrum (plot F) of
the near position, it has strong normal modes below 170 Hz, but not much energy and no special
features are recognized above that. The coherence time of the near recording is distinctly longer
below 170 Hz, but at higher frequencies all positions seem to approximately converge to similar
coherence time. This can also be seen in the frequency-dependent coherence time and e�ective
duration plots (B and D), which appear to be nearly merged above 1000 Hz. This suggests that the
degree of coherence is almost the same at these frequencies in all room positions, which can be a
result of the spectral content of the source combined with its incoherent nature.

In the second example (Figure A.9), male singing for 1.4 s is analyzed. Once again, the coherence
time estimates were generally longer for the near position both at low frequencies below 150 Hz,
and around a couple of distinct resonances (plot B). While the tendency for the coherence time
to get shorter with higher frequencies is apparent here too, the additional energy in other spectral
components makes the frequency dependence more erratic. This may be gathered by inspecting the
second frequency (700 Hz), which was analyzed because it does not correspond to any clear peak.
The coherence time at 700 Hz drops signi�cantly to around 5 ms in the near position, or shorter
in other positions (plot C). It is lower than the next resonance at 1137 Hz, which has 13�23 ms
coherence time, depending on the positions (plot E). The di�erent nature of this source coherence
is evident in the variation of the coherence time and e�ective duration in frequency (plots B and
D), which are not nearly as monotonically linear as that of the tom drum.

In the third example (Figure A.10), a short passage (3 s) of tenor saxophone fast notes was
recorded in an identical setup to the singing. While the near-�eld recording has the longest coherence
time, the rank order of the other recordings from the room is not always predictable. Especially
in the connected room and the piano, there may have been speci�c room modes or soundboard
resonances that enhanced some of the frequencies. In general, even though the notes that were
played are short, they still consist of relatively long periodic portions that have high coherence at
low frequencies. However, the relatively high coherence manifests primarily in near-�eld, as can be
seen in the coherence time and e�ective duration curves (plots B and D).

A.6.2 Decoherence as a function of position and frequency

It has been shown that in reverberation the pressure �eld is decohered between two points with
increasing distance and frequency, given that the sound is stationary and represents a perfectly di�use
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Figure A.8: The autocorrelation of a �oor tom drum of a drum set being played for 3 s. The
autocorrelation function envelopes of the same material recorded in four di�erent positions
in the room are compared at three di�erent frequencies. The �rst at 70 Hz (plot A) and
second at 164 Hz (C) are resonances of the drum, as is marked in the spectrum of the near
position (plot F). At 1000 Hz (plot E) and in general above 200 Hz, there are no special
spectral features and the sound may be largely incoherent at the source. Plots B and D are
the frequency-dependent mean coherence time (at -10 dB) and median running coherence
time, or e�ective duration, respectively.
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Figure A.9: Autocorrelation of male singing for 1.4 s. The autocorrelation function envelopes
of the same material recorded simultaneously in four di�erent positions in the room is com-
pared at three di�erent frequencies. The �rst at 281 Hz (plot A) is f0 and the third at 1137
Hz (plot E) is a distinct resonance. The 700 Hz frequency (plot C) was chosen to illustrate the
e�ect of no discernible resonance and low energy on the autocorrelation. The frequencies are
marked in the spectrum (plot F). Plots B and D are the frequency-dependent mean coherence
time (at -10 dB) and median running coherence time, or e�ective duration, respectively.
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Figure A.10: Autocorrelation of tenor saxophone playing fast notes for 3 s, in the same
conditions as the male singing example from Figure A.9. The frequencies in the analysis
(plots A, C, E) were selected from peaks in the spectrum (plot F), but the near position
tended to exhibit longer coherence time (plot B) and e�ective duration (D) than the other
microphone positions.
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�eld (Cook et al., 1955). How relevant is this e�ect to more realistic sounds that are nonstationary
and are not placed within a perfectly di�use �eld? Figure A.11 shows, once again, the tom drum,
saxophone, and male singing recordings�each analyzed at the same three frequencies as in �A.6.1.
The coherence functions of pairs of recordings are displayed in comparison with the self-coherence
(autocorrelation) function in the near position. It can be seen that in none of the cases is there
complete (spatial) coherence between the close and any remote microphone, but rather moderate
partial coherence (between -10 and -3 dB) over a narrow time interval, which includes the acoustic
path delay. According to Eqs. 8.87 and 8.69, at a distance of 0.8 m (the approximate distance
between the �near� and �above� microphones according to the their broadband cross-correlation),
the coherence of the tom drum at 70 Hz should have been -16 dB (close to the �rst zero of the
sinc function), whereas we obtained -4 dB. At 164 Hz, for that same distance, the sinc function is
past its �rst zero and the coherence is expected to be -9 dB, whereas the obtained value is -5.7 dB.
In the case of the saxophone and singing, for a microphone distance of 1�1.5 m, the coherence of
the lowest frequencies should have been around -15 dB in both cases, whereas we obtained -5 and
-6 dB, respectively. Similar values are obtained from the coherence functions between the far-�eld
microphones.

Another interesting feature is that it is unpredictable which of the three remote positions is
the most decohered one with respect to the near position. In one case it is the �far� position
(70 Hz, tom), in some cases it is the �out� position of the small room (tom�164 and 1000 Hz;
singing�281 and 700 Hz), and in yet other cases the three positions are about equal (singing�1137
Hz; all saxophone frequencies). Such an erratic behavior can be the result of interaction between
the coherence function of the source with local modes and re�ections, in addition to the di�erent
coherence at the source of the three instruments.

All in all, from the small sample of recordings that was tested, the room acoustics in question
cannot be considered a true di�use �eld, because it indicates that there are extensive frequency
ranges of relatively high degree of coherence. Therefore, the pressure �elds in these positions may
be better described as partially coherent, rather than completely incoherent.

A.6.3 Cross-spectral coherence

Correlation between frequency components of the pressure �eld is another e�ect that was theoret-
ically predicted for di�use �elds (Schroeder, 1962), but has not been demonstrated empirically, to
the best knowledge of the author. We demonstrate the e�ect for the same sound recordings, which
we already know did not take place in a perfectly di�use �eld. The autocorrelation functions of
the (complex) fast Fourier transforms (non-negative frequencies only, 1 Hz resolution) of the broad-
band pressure �elds are plotted in Figure A.12 for a range of 50 Hz. The data vary in how quickly
neighboring frequency components become e�ectively decorrelated. Borrowing from the previous
time-domain analysis, the drop from complete coherence to -3 dB is instantaneous�within ∆f = 1
Hz. if we treat the -10 dB mark as a rough indicator for incoherence, then a broad range of responses
is evident from the plots. In two cases�the �above� tom and `'piano� saxophone positions�the
sound barely decoheres over 50 Hz. Other cases can be anything from ∆f of 5 to 20 Hz, depending
on how the di�erent �uctuations are interpreted. In Schroeder's original paper, ∆f = 3 Hz for
T60 = 1 s led to a drop in coherence below -10 dB (Schroeder, 1962, Figure 3).

As larger frequency deviations than predicted by stationary coherence theory were obtained for
the present examples, we can conclude that adjacent components are partially coherent, albeit
weakly. This supports the general theory of nonstationary coherence, as was brie�y reviewed in
� 8.2.9, which explicitly discusses coherence between di�erent frequency components�something
that violates the stationarity assumption in standard coherence theory (Eq. 8.30).
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Figure A.11: Cross-correlation of pressure �elds in four di�erent positions in the same space
for three di�erent sound sources. Each sound source was analyzed around three frequencies,
according to Figures A.8, A.9, and A.10.
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Figure A.12: The autocorrelation of the pressure frequency response of three sources in four
di�erent positions in space. See �A.6.1 for further details about the sources and recording
positions.
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A.7 Conclusion

This appendix presented the coherence functions of a small sample of real acoustic sources that were
recorded indoors in di�erent room acoustical conditions. The range of responses is wide and so are
the values that are obtained from them. The correspondence between the theoretical results, which
are based on the approximate di�use room acoustics, to the present ones is not always predictable and
is made more di�cult because of nonstationarity. Still, these results demonstrate the applicability of
the concept of partial coherence, either as a descriptor of the narrowband self-coherence of a sound,
or of the spatial coherence between di�erence receiver positions.

The collection of coherence functions above is by no means a representative sample of acoustic
sources in general. However, given the dearth of published data about it in the literature, it provides
a starting point for more comprehensive attempts to chart this large territory in the future.
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