
Chapter 11

Estimating the auditory imaging

parameters

11.1 Introduction

All physical systems are dispersive to a certain extent (Brillouin, 1960) and various dispersive phe-
nomena have been reviewed in �3 to illustrate it in acoustical systems. Therefore, it should not be
surprising to encounter dispersive e�ects in the hearing organs as well. While it has been commonly
accepted that the cochlea is dispersive, other parts of the system are not explicitly considered to be
so. Most importantly, second-order dispersive e�ects�group velocity (or group delay) dispersion�
are even more rarely considered and are not given any special signi�cance, and are often assumed
to have negligible e�ects on hearing.

Based on available �ndings from literature, in this chapter we attempt to estimate the human
group-velocity dispersion along the auditory system�the outer ear, middle ear, inner ear, and brain-
stem. As will be seen, dispersion is always frequency-dependent, which results in non-negligible
group-delay dispersion. Conveniently, consecutive dispersive paths are additive (being phase argu-
ments) and may be factored into single parameters (�B.3). The main segments that will be identi�ed
are the cochlear dispersion up to the organ of Corti, the time lens of the organ of Corti, and the
neural dispersion from the inner hair cells (IHCs) to the inferior colliculus (IC). These segments will
inform the subsequent temporal imaging analysis. See Figure 11.1 for the rough segmentation of
the system considered here.

Throughout this chapter, the e�ects of bone conduction hearing are neglected. While it is well-
known that the outer and middle ear stages of the ear may be bypassed through bone conduction
(Békésy, 1948), the e�ect is not dominant in normal conditions, with the exception of some sea
mammals (�2.5.1) and in listeners with severe conductive losses that must rely on bone conduction
for hearing.

All data from published �gures in this chapter and throughout this work were digitized using
WebPlotDigitizer97 and analyzed in Matlab (the Mathworks Inc.).

11.2 The outer ear

The outer ear is the �rst organ to receive the information carried by acoustic waves in air or in water,
neglecting bone conduction. By the time the sound reaches the outer ears, it has accumulated a
degree of dispersion that is proportional to the distance it has traversed in the medium, often

97https://apps.automeris.io/wpd/ by Ankit Rohatgi.
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Figure 11.1: The rough division of the auditory system to dispersive elements. The mechanical
parts of the ear are combined into one group-delay-dispersive parameter, u, with contributions
from the outer ear uo, the middle ear um, and the cochlea uc. The time lens with curvature s
is hypothesized to be mechanically incorporated in the organ of Corti and neurally controlled
(accommodated; �16.4.2). The neural group-delay dispersion v begins as late as the auditory
nerve, but may also comprise the inner hair cells and the passive transmission in the organ of
Corti. The external group-delay dispersion in the environment ue is not considered directly
in the analysis, but is assumed to be relatively low compared to u in normal atmospheric
conditions and over short distances.

including additional re�ections. As was shown in � 3.4.2, the atmospheric dispersion is generally
negligible over small distances, but it may be susceptible to unpredictable weather conditions and
to other environmental factors, which likely a�ect the group-velocity dispersion as well. Another
uncertainty is the combination of acoustic modes that carry the information at the point of entrance
to the ear. As was noted in the previous chapter, the temporal imaging equations are well-de�ned
only for plane waves, where higher-order modes are absent. In this light, the outer ear seems to
play an important role, as it imposes a unimodal, plane-wave-only, transmission over a signi�cant
portion of the audio spectrum.

11.2.1 The waveguide approximation

To a �rst approximation, the outer ear is an acoustic waveguide, shaped as a pipe that is closed
in one end. Wave propagation in pipes is typically analyzed in terms of normal modes, which can
be spatially distributed in di�erent ways, according to the geometry of the pipe (for illustration, see
Fletcher and Rossing, 1998, p. 193). Ideal waveguides act as transmission lines and allow acoustic
energy to be carried only in the plane wave mode, as long as the wavelength of the sound is much
longer than the diameter of the tube, λ ≫ D (Morse and Ingard, 1968, pp. 471�472). Higher
modes do not exist below a certain cuto� frequency, where their phase velocity is in�nite. Above
this cuto�, the phase velocity decreases quickly. If the tube walls are yielding�if they are not
entirely rigid, but have a �nite compliance�then they locally react to the pressure gradient of the
plane wave98 (Morse and Ingard, 1968, pp. 475-477). This results in frequency-dependent phase
velocity as a function of the wall material and resonances for the particular pipe geometry. It means
that the low-frequency waves travel faster than the high-frequency ones�dispersion. When the
one-dimensional plane-wave approximation breaks down, additional modes appear as some of the
sound waves begin to propagate along the waveguide circumference rather than in its center (Morse
and Ingard, 1968, pp. 688�689). Applying the simplistic rigid-wall waveguide limit to the human

98If the point of the surface that is impacted by the wave does not interact with its vicinity, then the surface is
said to be locally reactive. If the surface reacts as a whole (like a membrane), then its impedance is of extended
reaction.
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ear canal geometry, and using a typical ear canal diameter of 0.7 cm (Goode et al., 1977, cited in
Rabbitt and Holmes, 1988), or from cross-sectional data 0.75 cm (Rosowski, 1994), indicates a strict
plane-wave propagation of up to about 24.5 kHz of sound in air, at normal room temperature, for an
open-ended waveguide. Keefe et al. (1993) reported growing diameters with age with adult diameter
of 1.04 cm, corresponding to a 16.5 kHz cuto�. However, these cuto� values are unrealistic, as is
shown next.

11.2.2 Higher-order modes

In a real outer ear, strict plane-wave propagation breaks down at much lower frequencies than
predicted by the waveguide approximation due to the complex geometry of the ear canal. When
sound arrives from the environment to the outer ear, it is scattered by the concha, which creates
various non-planar modes, mainly at high frequencies (Rabbitt and Holmes, 1988; Rabbitt and
Friedrich, 1991). However, these modes quickly vanish once inside the ear canal, as the plane-wave
mode becomes dominant within a few millimeters, even at high frequencies (Rabbitt and Friedrich,
1991; Hudde and Schmidt, 2009). Three-dimensional simulations of sound waves in the bent human
ear canal showed that the ear canal has additional non-planar modes that are trapped around its
bends, but these modes also vanish very quickly and do not interfere with the plane wave propagation
(Hudde and Schmidt, 2009).

Analytic approximation to the solution of the wave equation of the ear canal found that higher
vibrational modes start to be present from about 4 kHz (Rabbitt and Holmes, 1988). These modes
are formed by the eardrum (the pars tensa) itself due to its elasticity and geometry that is detached
from the ear canal walls. With increasing frequency the eardrum modes tend to extend spatially to
the interior of the ear canal, and these modes are re�ected back to the canal and interact with its
trapped modes. This may explain an e�ect of probe microphone response variance as a function of
distance from the eardrum above 4 kHz (Caldwell et al., 2006). Holographic measurements of the
eardrum revealed modes above 1 kHz, which grow in dominance at higher frequencies (Cheng et al.,
2013). The e�ect extends even to the middle ear, as impedance measurements of the cat's middle
ear were best modeled by including standing waves of the eardrum above 3 kHz, which produced
a measurable transmission delay (Puria and Allen, 1998). Therefore, the dominant non-planar, and
thus dispersive, mechanism in the ear canal is not a result of yielding walls, but rather of the tube
coupling to the compliant, oddly shaped eardrum, which is itself yielding.

All together, the pressure wave that arrives to the middle ear is the sum of all the modes that
make it to the eardrum. So, at frequencies below 5 kHz the relative coupling of the non-planar
higher-order modes in the ear canal to the movement of the eardrum is about 10% for children and
close to 30% for adults, and about 25% at 4 kHz (Rabbitt and Holmes, 1988). Hudde and Schmidt
(2009) found that the eardrum minimally disturbs the plane-wave mode below 4 kHz, despite its
compliance and middle ear resonances above 1 kHz.

One question remains unanswered regarding the high-frequency domain above 4 kHz, where
non-planar modes carry more energy: is there any dispersion distortion (�10.4) that a�ects the
information entering the middle ear? The topic has not been considered at all in the acoustic
literature. However, indirect data from the cat suggest that dispersion distortion may be a real
problem. Probe microphone measurements in the cat's ear canal show that above 10 kHz the
variation of pressure over the eardrum surface makes it impossible to have one reference or mean
level that is con�dently conducted to the middle ear, due to anomalous high-frequency response
(Khanna and Stinson, 1985). In another perspective, it was demonstrated through simulations that
the multitude of normal modes at high frequencies is advantageous in terms of energy distribution,
and hence, power transmission to the middle ear (Fay et al., 2006).
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In conclusion, treating the ear canal as one-dimensional plane wave conduit is a justi�ed assump-
tion below 4 kHz in humans, in line with the dispersion equation assumptions. At higher frequencies,
the validity of this assumption is expected to progressively drop, but to an unknown degree. The
speci�c cuto� is most certaintly di�erent in other animals with di�erent ear geometries.

11.2.3 The group-velocity dispersion of the outer ear

The group-velocity dispersion will be estimated using published phase or group delay data.
In measuring the phase response of the outer ear, the results may be susceptible to large errors

due to small variations in measurement positions at frequencies above 4 kHz, the small dimensions
involved, the resonances of the ear canal, �nite dimensions of the microphone, and access to the
eardrum (Brass and Locke, 1997; Caldwell et al., 2006). Figure 11.2 reproduces ear-canal phase
and group delay data compiled from various studies, which employed di�erent techniques to obtain
phase measurements, all at slightly di�erent measurement positions. Ear canal phase data was
obtained from three subjects by Mehrgardt and Mellert (1977) for a free-�eld source by subtracting
the response of a free-�eld microphone positioned at the ear canal entrance from the response of a
probe microphone near the eardrum, 20 cm from the entrance (top left). Data from Rasetshwane
and Neely (2011) (top right) are full-spectrum re�ectance group delay measurements averaged from
24 individual subjects. Similar data from two additional subjects were reported by Keefe et al. (1993)
for a narrower spectrum (bottom left). These measurements were obtained by sealing the ear canal,
and �ush-mounting a miniature sound source on the seal, while a probe microphone was positioned
right outside the eardrum. The group delay of these measurements accounts for the round trip of
the pressure wave, so they were divided by two (Voss et al., 2000). Finally, direct measurements of
the group delay in the ear canal of 11 subjects were also provided by Blauert (1997), for a sound
source positioned 4 mm inside the ear canal, and a probe microphone close to the eardrum (bottom
right). All datasets were polynomially �tted in order to obtain smooth functions of group delay from
phase, and group-delay dispersion from the group delay. The polynomial �ts are displayed in Figure
11.2 as well.

Using the �tted phase and group delay functions, the outer ear dispersion coe�cient uo can be
readily computed with

uo =
1

2

dτg
dω

= −1

2

d2ϕ

dω2
=
β

′′
o ζo
2

(11.1)

according to Eq. 10.25. The resultant group-delay dispersion from all datasets is plotted in Figure
11.3. The data exhibit large variability that re�ects the relative microphone and source positions
and, perhaps, the measurement methods themselves. The estimates �uctuate between negative and
positive values at di�erent spectral regions, but is bounded for |u| ≤ 1.5 · 10−8 s2 / rad. Below 100
Hz and above 10 kHz the estimates are not displayed because of insu�cient data and, hence, poor
�ts.

The estimated values of the ear canal dispersion indicate that unless a larger and stabler group-
velocity dispersion segment follows the outer ear, auditory imaging may su�er as a result of the
frequent sign changes as a function of frequency.

11.3 The middle ear

The middle ear appears to have relatively simple vibrational dynamics in comparison with both outer
and inner ears, as its movement is essentially uniaxial and linear. While plane-wave movement is
irrelevant here, the paratonal conditions can equivalently apply as long as the vibration is unimodal
and one-dimensional.
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Figure 11.2: Extracted and �tted phase and group delay of ear canal data from literature.
Top left: Phase response of a single subject from Mehrgardt and Mellert (1977, Figure 6,
bottom), using a probe microphone at the eardrum referenced to the ear canal entrance. Top
right: Group delay data based on re�ectance measurements on 24 subjects (Rasetshwane and
Neely, 2011, Figure 4, bottom). Bottom left: Ear canal re�ectance group delay data of two
subjects (Keefe et al., 1993, Figure 17, right). Bottom right: Direct ear canal group delay
measurements of 11 subjects, source at 4 mm inside the ear canal, and probe microphone
by the eardrum (Blauert, 1997, Figure 18, bottom, 0◦). The bottom polynomial �ts are 6th
order, the top left is 4th order, and top right is 8th order.
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Figure 11.3: The group-velocity dispersion of the group delay data plotted in Figure 11.2,
according to Eq. 11.1.
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11.3.1 The middle ear vibrational modes

The ossicular chain of the middle ear receives vibrational energy from the eardrum movements, which
re�ect the summed modes at the output of the outer ear. Measurements on human cadavers show a
rather linear response in amplitude and phase of the middle ear, but they also indicate that there are
several resonant modes between 1.2 kHz and 2 kHz (Homma et al., 2009). Voss et al. (2000) found
that the middle ear ossicular movement is dominated by translational movement of the bones up to
1 kHz, which may be combined with additional higher-order modes at higher frequencies. High order
modes are dominant at high frequencies in di�erent animals (above 3�4 kHz in humans), where they
are thought to improve sound transmission in mammals despite the ossicular mass and may even
be a factor in their extended hearing range, in comparison with other vertebrates (Puria and Steele,
2010; Rosowski et al., 2020). Thus, we may also expect some level of dispersion distortion from
the middle ear, which increases with frequency. Nevertheless, the frequency and phase responses
generally show a linear, well-behaved transfer function of a low-Q bandpass �lter centered at around
1 kHz (Voss et al., 2000; Aibara et al., 2001; Sun et al., 2002; Homma et al., 2009). Therefore, if
the middle ear has any impact on the single-mode transmission, then it should appear only above
1�2 kHz and is not expected to be particularly strong. Thus, the middle ear dynamics appears to be
e�ectively aligned with the plane-wave single mode assumption required for the temporal imaging
theory. Any anomalous behavior in its response likely re�ects the higher-order modes (and possibly
the dispersion distortion) of the outer ear.

Note that this analysis neglects the middle ear re�ex, which acts as an automatic gain control at
medium-high sound pressure levels (�2.2.2). However, during fast transitions, the re�ex may have
a transient dispersive e�ect as well.

11.3.2 Middle ear group-velocity dispersion

The middle ear phase response was measured in six temporal bones of human cadavers by Nakajima
et al. (2009), from which the group delay and group-delay dispersion could be calculated (Figure
11.4, left). The phase response is very close to being linear, which means that it has about constant
group delay, and almost negligible group-delay dispersion. Nevertheless, a fourth-order polynomial
better modeled the data than a linear �t. The polynomial �t was used to calculate the group delay
(middle) and the group-delay dispersion (right), which has a smaller magnitude than the outer ear
with |um| < 3 · 10−9 s2 / rad. The linear-phase alternative produces um = 0 throughout the
spectrum, which is an unphysical result.

11.4 The inner ear: oval window to the outer hair cells

As the complexity of the cochlear anatomy and mechanics is much greater than both the outer and
middle ears, there are several ways to segment the wave propagation before it reaches the auditory
nerve. Unlike the other parts of the ear, cochlear dispersion is relatively well-documented and is
sometimes considered a de�ning feature of the cochlear structure99. However, the presence of the
outer hair cells (OHCs) does not square with the conditions for a source-free propagation, since
they generate sound through their motility (Kemp, 1978; Ashmore, 2008). Additionally, they do not
constitute a passive medium for propagation, as their nonlinear ampli�cative nature may be taken
as negative absorption, whereas the traveling wave of the passive basilar membrane itself is highly

99For example, see references to the cochlea as an �acoustic prism� in Shera et al. (2002), Oxenham (2014), and
Altoè and Shera (2020).
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Figure 11.4: Middle ear phase response data from six temporal bones of human cadavers,
extracted from Nakajima et al. (2009, Figure 5, bottom). Left: Phase response data �tted
with linear and fourth-order polynomial functions. Middle: The derived group delay data,
which is constant for the linear �t. Right: The group-delay dispersion is very small for the
polynomial �t and is identically zero for the linear �t (not shown).

dampened within the cochlea. Therefore, the cochlear region of dispersion is de�ned here to include
the passive path only up to the OHCs, which will be dealt with separately in �11.6.

11.4.1 Single-mode traveling wave

The cochlear �uid is forced by the oval window movement that is driven by the one-dimensional
movement of the stapes footplate�the last bone of the ossicular chain. According to one of the
simplest and most in�uential one-dimensional models of the cochlear dynamics, fast pressure waves
in the incompressible cochlear �uid propagate from the oval window to the round window��rst
through scala vestibula via the helicotrema and into scala tympani (Peterson and Bogert, 1950).
The pressure di�erence between the two chambers produces a much slower di�erential pressure
wave that produces the transverse traveling wave along the cochlear partition, and speci�cally the
basilar membrane (BM), which separates the two scalae. The fast and slow waves can be viewed
as independent modes of transmission that can be expressed as plane waves. In this sense, both
modes contain the acoustic information from the outside world. While the slow traveling wave
theory has received most of the attention in modeling over the years (Békésy, 1960), there is still
some controversy as for the exact energy balance between the two modes and the exact role of the
fast wave (Robles and Ruggero, 2001). For example, there are various documented conductive loss
cases where information reaches the auditory nerve, despite of a lack of a traveling waves (Sohmer,
2015), or hearing in the absence of traveling wave in the ears of lizards and frogs, which have close
but somewhat di�erent auditory anatomy and mechanisms to mammals (Bell, 2012b). The role and
relative e�ect of the fast wave are controversial, but they appear to not be altogether negligible
(e.g., Lighthill, 1981; He et al., 2008b; Bell, 2012a; Recio-Spinoso and Rhode, 2015).

Once it is transformed to a traveling wave inside the cochlea, the movement is often considered
one-dimensional, although more realistic models of the cochlea are two- or three-dimensional. In
the basal region before the characteristic frequency (CF) peak, most analytical models, including
nonlinear ones, assume a one-dimensional wave motion with no additional modes (Zweig, 2015).
This assumption is often generalized to the peak area itself, where the �uid is said to maintain
laminar �ow (Duifhuis, 2012, pp. 58, 109�110). In the class of solutions referred to as the �long-
wave approximation� models, the geometrical distribution of the peak resonance over the width
of the BM is neglected, and the velocity of the �uid around the peak is redistributed to reduce
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the problem to a single dimension�still giving good agreement with observations�even though
the latter assumption is wrong (de Boer, 1996). While increased dimensionality in the modeling is
physically essential to produce the resonance of the BM, the modeling advantage of going to three
over two dimensions may be marginal (Zweig, 1991; de Boer, 1996). Higher-dimensional models
sometimes treat the �uid as three-dimensional, but still assume a one-dimensional array of resonators
(Zweig, 2015, 2016), or a transmission line (Peterson and Bogert, 1950; Verhulst et al., 2012).

The traveling wave itself is usually modeled as unimodal as well, but there are indications that
it may not be the case throughout the cochlea. A second mode was suspected as contributing to
the nonlinear dynamics unraveled by Rhode (1971). Higher-order vibrational modes that were found
useful in early modeling attempts of the cochlear partition were also considered to be a necessary
ingredient of cochlear models that should account for anomalous click glides (Lin and Guinan Jr,
2004). A �nite-element method (FEM) simulation of a simpli�ed passive cochlea (a straight box
model with a single partition as the BM) decomposed the traveling wave to orthogonal modes (Elliott
et al., 2013, Figure 7). It was found that the fundamental mode at 1 kHz is 25�30 dB stronger than
the second strongest mode. Evanescent modes became more signi�cant only more apically than
the CF (after the peak), but they decayed relatively quickly farther away. These �ndings are similar
to Watts (2000), where some cochlear modeling inconsistencies were resolved by adding a second
mode after the peak, which was also hypothesized to account for Rhode's observations.

Another assumption that is important to keep in check is the lack of dominant re�ections that
a�ect the forward-propagating waves in the cochlea. According to some evoked otoacoustic emission
(OAE) models, the emitted spectrum is the result of multiple re�ections from the basal end of the
cochlea or from the helicotrema (Kemp, 1978). However, the existence and exact nature of such
re�ections are not settled matters (Kemp, 2007). For example, re�ections from irregularities in the
cochlear walls may interfere with the propagating wave in the BM and there is some evidence from
interferometric and OAE measurements of the chinchilla that it creates ripples (micro-structure) in
the BM spectrum, phase, and multiple-lobe envelope response to clicks (Shera and Cooper, 2013,
but see He and Ren, 2013; Wit and Bell, 2015; Shera, 2015). While these small ripples seem to
occur in many click measurements, some argue that the contribution of re�ections to the overall
cochlear response may be safely neglected (de Boer and Viergever, 1984). A reverse traveling wave
was inferred to be present from the measurements of ex-vivo gerbil cochleas both at basal and apical
positions relative to the characteristic frequency in the �rst and second cochlear turns (Zosuls et al.,
2021).

In summary, the assumption of the single-mode transmission appears to be good only in �rst
approximation, as it may be violated more apically than the CF peak. The exact e�ect of the
higher-level modes or internal re�ections on the neural coding and eventual perception, however,
is not at all clear, especially since much of their analysis has been done in simulations, simpli�ed
theoretical models, or animals. Nevertheless, we shall assume that these e�ects are small enough to
be negligible, while focusing on the qualitative �rst-order response of the cochlea in their absence.
This approach is going to be surprisingly e�ective, despite the mitigating approximations.

11.4.2 Cochlear dispersion and group-velocity dispersion

It was Békésy (1943/1949) who �rst observed that di�erent pure-tone frequencies appear with
di�erent delay between the stapes and their corresponding CF resonance on the basilar membrane.
In the most immediate interpretation, the di�erential delay re�ects the di�erent paths that the
traveling wave information takes to arrive to the peak region. The basal end of the BM, close
to the oval window input, responds to high frequencies faster (it peaks earlier) than the apical
end responds to low frequencies, due to the frequency-dependent impedance of the BM. A more
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physically rigorous explanation was provided by Ramamoorthy et al. (2010), who showed that even
a simpli�ed system with a uniform plate (modeling the BM) coupled to a �uid-�lled duct exhibits
dispersion. The mechanical dispersion translates to dispersion in the neural encoding of di�erent
frequencies.

As it turns out, the group delay itself is also frequency dependent as was �rst observed neurally in
rats, where it was found that the input frequency slopes of FM tones were not conserved at the output
(Møller, 1974). The change in instantaneous frequency is a characteristic of the impulse response of
the basilar membrane and is referred to as a frequency glide (de Boer and Nuttall, 1997; see Table
6.1). Further direct observations were obtained in di�erent animals, although the glide direction
may vary between species and CFs (e.g., Recio et al., 1998; Carney et al., 1999; Recio-Spinoso
et al., 2005; Wagner et al., 2009; Recio-Spinoso and Rhode, 2015). Pyschoacoustic con�rmation
for dispersion has been obtained several times as well (e.g., Smith et al., 1986; Kohlrausch and
Sander, 1995; Oxenham and Dau, 2001a,b; Summers et al., 2003; Shen and Lentz, 2009), where
the curvature has been found to be negative and to increase with frequency, contrary to �ndings
in certain animals. Oxenham and Dau (2001b) noted that the phase behavior cannot be predicted
by simple auditory �lter models. Indeed, inconsistent estimates of group delay as a function of
frequency were computed using seven di�erent cochlear models (Saremi et al., 2016, Figure 6A).
Simulating clicks of 1 kHz carriers, the modeled group-delay slopes around 1 kHz were found to be
inconsistent in sign and in their functional form (linear or curved). However, many of these studies
do not make a clear distinction between dispersion arising in the cochlea itself and other dispersive
contributions from the rest of the auditory system (but see �11.7.2).

While there is some inconsistency regarding the exact mechanism behind the frequency glides,
as well as their exact frequency dependence in humans, there is no doubt that they exist. Although
the glide slopes are not always straight, none of the cited studies advocated for phase terms that are
higher than quadratic. Thus, in the vicinity of the CF, a linear curvature seems to be an acceptable
assumption. This assumption will be challenged in �15.9.2.

11.4.3 Estimating the cochlear group-delay dispersion

Several attempts at estimating the group delay of the cochlea have been published that employed
di�erent methods, all of which contain rather strong assumptions that make the estimates uncertain
to some extent. For example, both evoked auditory brainstem response (ABR) and evoked transient
OAE (TOAE) have been used as indirect methods to estimate the cochlear group delay. For this to
be the case, their output must contain exactly the same dispersive contribution from the cochlea
and it should be ensured that neural group-delay dispersion is negligible. This was the conclusion of
an early attempt to compare the estimates from the two methods in Neely et al. (1988), where data
from separate TOAE and ABR studies were similar enough, so that the contribution of the neural
pathways to the responses was considered to be a constant delay (i.e., that results in zero group-
delay dispersion). However, a more recent study that repeated the comparison using simultaneous
measurements of ABR and TOAE, using the same stimuli and subjects, could not establish an
identical group delay of the two measures, regardless of the speci�c parameters used for the stimuli
(Rasetshwane et al., 2013)100.

A somewhat more transparent cochlear group delay estimation method was therefore favored,
based on a group delay map measured in the chinchilla and transformed to human (Temchin et al.,
2005; Ruggero and Temchin, 2007). In-vivo cochlear group delay was measured between the eardrum
and the auditory nerve of the chinchilla using the Wiener-kernel method for obtaining the nonlinear

100The ABR and TOAE methods will be revisited in the section about neural dispersion �11.7, where these methods
appear to have no alternatives, at present.
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impulse response from white noise (Temchin et al., 2005). Additional post-mortem group delay
measurements of the chinchilla allowed Ruggero and Temchin (2007) to form a re-tuned map for
the cochlea that could be used to transform between the live and post-mortem measurements. It
was also corrected for frequency-dependent phase shifts as a result of death, which re�ect the active
e�ect of ampli�cation in the live cochlea. Then, due to scaling similarities between all mammals
and in particular the similarity between the chinchilla and human hearing ranges, the authors were
able to transform human cadaver data to a live map of group delay (Ruggero and Temchin, 2007,
Figure 7). The group delay was corrected also for the middle ear and constant synaptic and neural
conduction delays (Ruggero and Temchin, 2007, see their Figure 8 caption). The group delay data
were shown to agree with a large pool of animal data, including non-mammalian vertebrates, despite
widely di�erent morphologies.

It is arguable whether the post-mortem or the live group delay data should be used in the
computation of the cochlear group-delay dispersion. The post-mortem data entails OHC inactivity
that removes any ampli�cative phase e�ects from the total dispersion, which are present especially
at low levels. But it also broadens the cochlear �lter signi�cantly, which has an e�ect that extends
apically from the best frequency site and may distort the phase response. The live data, in contrast,
has a normal �lter response, but ostensibly includes the active OHC e�ect101. Both responses
include a mechanical dispersive path associated with the IHCs, which cannot be subtracted using
the available data. As it turns out, the di�erence between the two datasets is relatively small,
although the live data seem to produce stabler results in some of the calculations throughout this
work.

The group delay functions are plotted in Figure 11.5, left, for the live and post-mortem human
responses. The functions are a�ne power-law �ts, reproduced from the functions in Temchin et al.
(2005, Figure 13). The live data �t (solid black) is

τg,live = 0.43 + 1.67f−0.72
kHz ms (11.2)

where the group delay τg,live is given in ms and the frequency f in kHz. Similarly, the post-mortem
group delay function is given by

τg,dead = 0.02 + 1.85f−0.98
kHz ms (11.3)

The cochlear group-delay dispersion uc can be directly obtained by di�erentiating these expressions
with respect to ω and dividing by 2, according to Eq. 11.1 (Figure 11.5, right). Additionally, for
comparison, some of the above-mentioned evoked ABR and OAE group delay data are plotted as
well. The OAE is from Shera and Guinan Jr (2000) and Fobel and Dau (2004) and the ABR is from
Neely et al. (1988).

101The live data refer to the active status of the OHCs, which provide frequency selectivity and compressive gain in
normal listening conditions. In this work, the OHCs also have a role in time lensing, which is phase modulation in the
time domain (�11.6). Hence, the e�ect of phase modulation can be thought to a�ect the cochlear group delay and
group-delay dispersion �gures from Ruggero and Temchin (2007). However, the nonlinear analysis in Temchin et al.
(2005) and Ruggero and Temchin (2007) is based on Wiener-kernel method, which requires white noise as input to
the nonlinear system. Typically, the system nonlinearity is considered static (time-invariant) (de Boer and de Jongh,
1978; van Dijk et al., 1994). However, there is nothing about the operation of the OHCs that suggests that it is
static. While we do not know if the two functions are related, the ampli�cative OHC function could theoretically be
almost instantaneous (Altoè et al., 2017), whereas the time lens operation may require buildup time to arrive to the
operation point of its modulated sti�ness (�11.6; see also �9.9.3). For such a system to work, the input has to be
(partially) coherent, rather than totally incoherent (white noise). This means that the Wiener-kernel method may fail
to engage the time-lens functionality of the OHCs and therefore may not disclose any phase modulation curvature.
The exception may be at low frequencies, where the auditory narrowband �lters can signi�cantly cohere the input
(�9.9.2). Of course, bypassing the time-lens is exactly what we would like to achieve in order to get a clean estimate
of the cochlear dispersion.
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Figure 11.5: Left: Live (black solid) and post-mortem (blue dash) group delay of the human
cochlea, based on human cadaver data compiled by Ruggero and Temchin (2007, Figure 7),
which were corrected for the e�ects of death using a chinchilla group delay cochlear map from
Temchin et al. (2005). Additional estimates based on closed-form functional �ts are based on
OAE measurements (green dash dot) (Shera and Guinan Jr, 2000; Fobel and Dau, 2004) and
ABR (red dot) (Neely et al., 1988). Right: Group-delay dispersion derived from the group
delay curves on the left.

11.5 Total group-delay dispersion of the inner ear

Combining the dispersions of the outer ear (uo), middle ear (um), and cochlea (uc), we can obtain
an estimate for the total input dispersion of the human auditory system

u = uo + um + uc (11.4)

The total group-delay dispersion is plotted in Figure 11.6 both for the live and for post-mortem
responses, which merge above 3 kHz. The outer ear was taken as the relatively �well-behaved�
average response from Rasetshwane and Neely (2011), which was based on many more subjects
than the other datasets (Figure 11.2). The middle ear data were based on the only dataset that
was analyzed here from Nakajima et al. (2009).

The most important feature of the total input group-delay dispersion is that it is mostly dom-
inated by the cochlear group-delay dispersion. It means that it is not subjected to �uctuations in
frequency caused by the outer ear acoustics. Otherwise, more sign-change �holes� in the group-
delay dispersion curve could have dominated the total group-delay dispersion, as is seen at around
16 kHz in Figure 11.6. The same logic applies to the atmospheric dispersion that can be dominant
in extreme weather conditions or very long distances (Figure 3.3). These e�ects may be absorbed
by the relatively large cochlear dispersion (Figure 11.1).

Because of its dominance, we will often refer to the total input group-delay dispersion u simply
as cochlear dispersion.

11.6 The inner ear: time lensing by the outer hair cells

The time lens is the second new function of the OHCs that is hypothesized in this work. The
�rst one was of a phase-locked loop (PLL; �9). Despite their di�erences, the two may not be
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Figure 11.6: Total group-delay dispersion of the outer ear (Rasetshwane and Neely, 2011),
middle ear (Nakajima et al., 2009), and cochlea (Ruggero and Temchin, 2007). The dis-
continuity above 10 kHz represents a sign change, where the cochlear dispersion no longer
dominates the input dispersion and all three estimates are unreliable.

altogether independent as will be suggested in �16.4.2. However, this section, while presenting �ve
separate lines of evidence and a hypothetical mechanism, may be rightly considered speculative�
even more than the PLL�especially given that it relies on an acoustic phenomenon that has not
been previously modeled (phase modulation)102. Nevertheless, the utility of this proposal will be
essential for the temporal imaging theory, and hence for the rest of this work. As will turn out,
the empirical evidence we have is su�cient to demonstrate that phase modulation does exist, but
extrapolating its magnitude to humans will prove challenging due to several unknowns in the process.
We will therefore aim to estimate the upper and lower bounds for the phase modulation in humans
and later discuss how the di�erent bounds can relate to di�erent known responses of the ear.

11.6.1 Sti�ness-dependent traveling-wave phase modulation

In the following, a general formulation of acoustic phase modulation will be proposed, which depends
on sti�ness variation of the medium. Speci�cally, a corresponding mechanism will be proposed for
how phase modulation of the traveling wave can emerge as a result of the unique features of the
OHCs, and by proxy, the organ of Corti. Because of the paucity of direct empirical data, it is kept
largely qualitative and, arguably, oversimpli�ed.

Let us examine the phase velocity of a narrowband disturbance, as it propagates from the base
of the cochlea to its apex as a traveling wave, through the site of the CF resonance. The speed of
propagation depends on the local density of the BM and its Young's modulus (or its sti�ness, if it
is modeled as a one-dimensional oscillator array). It is well-established that the BM sti�ness (and
the sti�ness of other supporting cells in the organ of Corti) varies continuously and monotonically
along the BM due to geometrical changes (Naidu and Mountain, 1998; Emadi et al., 2004; Teudt
and Richter, 2014; Békésy, 1960, pp. 466�469). Additionally, around the resonance, the sti�ness of
the BM changes with the electromotile actuation of the OHCs (He and Dallos, 1999; Zheng et al.,
2007), which are embedded in the organ of Corti that is attached to the BM with the supporting
Deiters cells (Slepecky, 1996). When the traveling wave moves from the base toward the site of

102But see a discussion about an apparent phase modulation in the chinchilla's BM basal response to clicks in Recio
and Rhode (2000), where it was suggested that the modulation is a result of nonlinear and compressive processes
and is likely not a mere artifact of BM motion.
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resonance, its movement gradually causes more vigorous hair bundle de�ections, which in turn gate
a stronger current in the OHCs and raises their intracellular potential. Apical to the resonance,
the mechanoelectric activity decreases. Therefore, the somatic sti�ness of the OHC is e�ectively
modulated with the OHC potential, which in turn modulates the speed of propagation and the phase
of the traveling wave in the BM. While there is some controversy about the voltage dependence of
the OHC sti�ness in vivo (Hallworth, 2007; Dallos et al., 2008; Liu and Neely, 2009), even a small
e�ect can produce the phase modulation needed in a way that does not violate the observations by
Hallworth (2007), who did not �nd signi�cant sti�ness-voltage dependence in vitro.

Let us look at a forward traveling wave around ωc,

p(z, t) = a exp [i(ωct− kz)] (11.5)

Using the phase velocity de�nition c = ω/k, we would like to �nd the phase of the wave at point z,
which is within the region of the OHC modulation that is associated with the CF

p(z, t) = a exp
[
i
(
ωct−

ωcz0
c

− φ(z, t)
)]

(11.6)

The instantaneous phase φ(z, t) is determined by the traveling wave path between z0 and z(t). The
speed of sound in a �uid is de�ned as

c =
1

√
ρκ

(11.7)

where ρ is the �uid density, and κ is its adiabatic compressibility (Morse and Ingard, 1968, p. 229).
In the case of a one-dimensional oscillator array, ρ is instead the mass per unit length, and κ is
longitudinal compressibility�the reciprocal of sti�ness per unit length K (Morse and Ingard, 1968,
p. 84). It is convenient to adapt an acoustic index of refraction, which enables using a relative
sti�ness measure. The index of refraction n is generally de�ned with reference to the speed of light
in vacuum (e.g., Yariv and Yeh, 2007, p. 10), but in the acoustic case with reference to the speed
of sound in air (Kinsler et al., 1999, p. 136)

vp =
c

n
(11.8)

Where vp is the phase velocity in the medium. The speed in vacuum has no analog here, so let us
instead de�ne the index of refraction relative to the speed of the traveling wave in the passive BM

n =

√
ρKBM

ρBMK
(11.9)

Realistically, it may be much easier to modulate the compressibility than the density of the medium
(cf., Azhari, 2010, p. 37). In this case, the index of refraction simpli�es to n =

√
KBM/K.

We assume that the phase velocity vp is a function of position, because of the BM-width and
voltage-dependent sti�ness. Putting it all together, the instantaneous phase is

φ(z, t) =

∫ z(t)

z0

k(ω)dz =
ωc

c

∫ z(t)

z0

∆n(z, t)dz =
ωc

c

∫ z(t)

z0

√
KBM

K [z(t), V (t)]
dz (11.10)

where ∆n is the change in index of refraction along the acoustical path, which is calculated in
analogy to optics, and is equal to 0 at z0. The end point of z(t) may be on the BM, inside the organ
of Corti, or on top of it�on the reticular lamina. In this case it is determined by the voltage- and
place-dependent sti�ness K(z, V ). Note that to obtain the most relevant results, the coordinates
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must be of the traveling wave system, ζ and τ (Kolner, 1994a). Note also that this expression is
valid in a linear medium, but within a strong negative damping medium the conditions may change
and make the phase level-dependent as well (see indications for a �null-frequency� point where the
cochlear phase is level-independent; Geisler and Rhode, 1982; Ruggero et al., 1997 and Palmer and
Shackleton, 2009).

One implicit condition for this system to be e�cient is that the voltage signal must precede
the traveling wave in order to instantaneously modulate the sti�ness, before it reaches the CF site.
This can happen in either one of two ways. One option is for the potential to build up over time
(say, within several periods) after it has been triggered by the electromotile response of the OHC
from the BM�e�ectively sustaining a feedback loop. This option is relatively unfavorable because
it requires the signal to be spectrally narrow and periodic and it prevents the system from reacting
instantly. Rather, it �sacri�ces� the onset of the signal, before sti�ness can become modulated.
Nevertheless, inasmuch as this mechanism is related to the compressive nonlinearity of the OHCs,
there are indications that the compression onset is not instantaneous (Cooper and van der Heijden,
2016; see also Altoè et al., 2017). Another phenomenon that suggests it may be the case is that
pitch perception from very short sinusoidal stimuli builds up over a few milliseconds, as was reviewed
in �9.9.3. It was interpreted as part of the PLL pulling in time, but it may have a parallel e�ect also
on activating the time lens.

The second option is that the electromotile response is triggered by a faster wave that de�ects
the hair bundle beforehand. This may happen if the bundle is sensitive to the compression wave in
the �uid. Alternatively, it can happen if the traveling wave of the TM, which is connected to the
tips of the stereocilia, is simultaneous but a bit faster than the traveling wave of the BM. Current
data suggest that the velocities of the traveling waves in the BM and TM are comparable (Stenfelt
et al., 2003; Farrahi et al., 2016), although they do not allow for conclusively determining which one
leads over the other in the live cochlea.

A completely di�erent and passive alternative cause for the production of phase modulation is if
the sti�ness function is frequency-dependent in a manner that is tuned according to distance from
the base (i.e., according to the CF). Such a condition would e�ectively mean that every frequency
component can be subjected to a somewhat di�erent impedance, which changes according to the
channel in which it is being analyzed. So, for example, 950 Hz component would be subjected to a
somewhat di�erent sti�ness when it traverses the 900 Hz and the 1000 Hz channels. As sti�ness is
usually measured statically and not dynamically, there is only scant evidence for frequency-dependent
sti�ness in the cochlea (Scherer and Gummer, 2004; de La Rochefoucauld and Olson, 2007). This
sti�ness function may additionally interact with the sti�ness gradient that has been observed between
the di�erent supporting cells and the hair cells within the organ of Corti (Babahosseini et al., 2022).
Passive sti�ness modulation may seem mathematically indistinguishable from the voltage-modulated
medium that was proposed as the primary mechanism. However, this possibility seems relatively
tenuous at present, if only because of the limited evidence to support it, and will not be explored
further.

In conclusion, we identi�ed a general mechanism by which the traveling wave may be phase-
modulated by the electromotility of the OHCs that causes sti�ness modulation. Since we do not
know the actual sti�ness function of the BM and the organ of Corti, this expression will provide
a theoretical anchor for the underlying cause for the modulation, rather than be used analytically.
Instead, we will resort to empirical data that suggest a slow modulatory e�ect in the cochlea that
can provide the evidence for a quadratic time-lens operation.

It should be mentioned that research of sti�ness modulation in non-biological systems is a topic
that has received some attention, but is still relatively nascent (Trainiti et al., 2019).
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11.6.2 Phase modulation evidence

Five di�erent studies were identi�ed in the hearing literature that can be directly interpreted as
showing phase modulation in the cochleas of gerbils and guinea-pigs. Four of them are amenable to
numerical phase curvature estimation (Guinan Jr and Cooper, 2008; Dong and Olson, 2013; Zosuls
et al., 2021; Meenderink and Dong, 2022), whereas the �fth one will only be treated qualitatively
(Cooper et al., 2018). As is discussed below, a degree of uncertainty about the precise values will
accompany us for the rest of this work, which is compounded by a high likelihood that the lens
curvature is variable due to auditory accommodation. Therefore, throughout this work, we may
occasionally consider particular bounds of time lens values rather than a �xed value.

Negative resistance due to outer hair cell activity

What appears to be an explicit demonstration of a cochlear phase response that can qualify as
a time lens was shown in the Mongolian gerbil by Dong and Olson (2013). Using a spatially-
coincident voltage and pressure dual-sensor to track the BM dynamics, it was possible to estimate
the temporal response of the OHCs in vivo with high precision. In particular, the phase responses
of the extracellular voltage, the BM displacement, and the pressure were measured around the
resonance site of 24 kHz (Dong and Olson, 2013, Figure 4). The extracellular voltage was measured
in the scala typmani close to the BM (a cochlear microphonic potential), which implies that it is
proportional to the intracellular voltage of the OHCs (Davis, 1965). This was indirectly con�rmed in
Dong and Olson (2013, Figure 3), where both evoked pressure and voltage are displayed and show a
peak around the CF in the live cochlea, whereas the voltage vanished post portem while the pressure
remained unchanged. It was found that below and above the CF, the displacement phase leads the
pressure phase, which entails that negative resistance is in e�ect. Critically, the voltage phase led
the displacement by about 0.4 cycles at the CF, but that lead decreased both below and above the
CF (in forced oscillators, the displacement lags the force and is at quarter-cycle lag at resonance;
Morse and Ingard, 1968, pp. 46�49). This is indicative that the OHCs impart power to the traveling
wave, which then produces the nonlinear ampli�cation of low-level inputs (Dong and Olson, 2013,
Figure 4D). But the fact that the phase drops above CF is unlike a classical oscillator (where the
voltage phase lead is expected to go to π at f → ∞) and appears rather like symmetrical phase
modulation that co-occurs with the forced ampli�cation.

Figure 11.7 reproduces Figure 4B of Dong and Olson (2013). It shows the relative phase between
the voltage and the displacement around a CF of 24 kHz. Similar phase data for the same frequency
in another animal were obtained between the voltage and the pressure, which is itself in phase with
displacement, although with varying levels of smoothness and symmetry (Dong and Olson, 2013,
Figures 5E and 6). As is seen in Figure 11.7, around the CF the voltage leads by almost half a cycle,
but is approximately in phase with the displacement below and above the CF region.

The nonlinear phase shift appears as would be expected from a phase modulator: it has an
apparent symmetrical form, which suggests that the frequency-dependent phase function may contain
a quadratic component. If, as Eq. 11.10 requires, the sti�ness of the OHCs is indeed voltage
dependent, then there has to be a modulatory e�ect on the traveling wave speed at the CF, or
in its propagation inside the organ of Corti. There are no direct estimates of either the sti�ness
or the velocity in Dong and Olson (2013), but a peak in the BM velocity can be derived from
the displacement peak at the CF, as is also commonly observed elsewhere (e.g., Ren, 2002; Zheng
et al., 2007). Additionally, a slowing down of the group velocity of the traveling wave at places
basal to the CF was observed in vivo in the gerbil, as well as in other mammals (van der Heijden
and Versteegh, 2015a). Finally, the phase variations in the BM motion just underneath the OHCs
coincide with the constant phase di�erence observed at the reticular lamina (Chen et al., 2011; Ren
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Figure 11.7: Left: Simultaneous relative voltage-to-displacement phase data of the gerbil's
basilar membrane around 24 kHz at 30�70 dB SPL, as was measured by Dong and Olson
(2013, Figure 4B). The extracellular voltage re�ects the intracellular voltage of the outer
hair cells. The displacement captures the movement of the traveling wave. Around the
characteristic frequency, the voltage phase leads by about 0.4 of a cycle over the displacement.
Two additional measurements at 80 and 90 dB SPL were likely contaminated by e�ects of
the fast pressure wave modes rather than the traveling wave, which violate the measurement
assumptions and are therefore not displayed. Right: Quadratic phase functions �tted to the
measurements on the left. The parabola peaks were constrained to the CF in all cases.

et al., 2016b), although it is seen below that phase modulation may occur around �hotspots� inside
the organ of Corti itself (Cooper et al., 2018)103. Therefore, it can be deduced that any phase
modulation�manifest as the di�erence between the extracellular voltage and displacement in the
BM�should be re�ected in the output of the cochlea at the IHCs and then encoded in the auditory
nerve.

Indeed, auditory nerve phase measurements at low frequencies show a distinct curvature around
the CF once their linear component (e.g., their mean constant group delay) is removed (or �de-
trended�, Temchin and Ruggero, 2010; Palmer and Shackleton, 2009)104. Additionally, the curvature
is often not centered around the CF (Palmer and Shackleton, 2009), and is not always symmetrical,
or quadratic looking, probably depending on its cochlear position (Temchin and Ruggero, 2010).
Whatever curvature was measured in Dong and Olson (2013), it incorporated also e�ects of adja-
cent dispersive paths before and after the CF. For the time being, the asymmetries that are also
noticeable in the data from Dong and Olson (2013) will be ignored.

103The phase di�erence for a pure tone between the BM and the reticular lamina was recently measured in vivo
in the gerbil (N = 8) and presented in He and Ren (2021) in their Figure 4g and Supplementary Data 4. The two
responses do not match, though, but both can be shown to have a small quadratic component once the linear phase
component is removed from the CF region. In the case of the plotted response, the peak is above the CF and the
curvature is an order of magnitude larger than in the spreadsheet data, which produce an almost negligible curvature
that is part of faster broadband oscillation. Neither case is obviously consistent or inconsistent with the data from
Dong and Olson (2013).

104Because the linear term is usually very dominant, typical phase responses may appear completely linear, similar
to a simple resonance of a bandpass �lter. So curved components were removed from low-frequency auditory nerve
responses in Allen (1983), which appear completely linear. In another more recent example, Lewis et al. (2002, Figure
6) used the Wiener-kernel technique to nonlinearly estimate the phase response from spike timing patterns in the
auditory nerve, using a white noise input. However, no curvature information could be seen there, maybe due to the
incoherent nature of the signal and the inability of the OHCs to phase lock to it.
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Figure 11.8: Phase response change in the guinea pig as a result of the medial olivocochlear
e�erent excitation at three characteristic frequencies: 12 kHz (left), 13.5 kHz (middle), and
18 kHz (right). The data are taken from Figures 3E, S1G, and S2G in Guinan Jr and Cooper
(2008). The dashed lines are quadratic �ts to the measurements that are shown in solid lines.

Olivocochlear e�erent bundle e�ects

Using a displacement-sensitive interferometer to measure the vibrations of the BM, Guinan Jr
and Cooper (2008) found that the phase response of a click depended on whether the medial-
olivocochlear (MOC) e�erent was activated (i.e., if it caused inhibition to the OHCs). A slow phase
lag was observed between the onset and the �rst minimum of the envelope response to the click
when the MOC was inhibiting compared to when it was not (no inhibition was observed in the click
amplitude during the �rst half period). The slow change took place over several carrier cycles, so it
had little e�ect on the instantaneous frequency of the click. We may expect that the MOC re�ex
(MOCR) has some e�ect on the time-lens curvature, perhaps in analogy to the ocular accommoda-
tion that controls the curvature of the crystalline lens. While this possibility will be explored only
in �16.4.2, we shall accept it as correct, at present, and obtain estimates for the phase modulation
value changes that were observed before and after e�erent stimulation.

Figures 3E and 6 in Guinan Jr and Cooper (2008) display the phase di�erence and the zero-
crossing values, respectively, of the two e�erent modes for one CF in the guinea pig �rst (basal) turn,
which allows for direct estimation of the temporal phase curvature, using Eq. 10.27. Supplementary
Figures S1G and S2G of Guinan Jr and Cooper (2008) provide similar data from two other guinea
pigs and CFs. The authors also stated that similar responses were obtained for the chinchilla. The
apparent phase curvature, which is reproduced in Figure 11.8, covers about 60 dB of input dynamic
range and seems to be level dependent. At low levels, a curvature change as a function of the MOC
inhibition is hardly visible. While these measurements provide a relatively extensive dataset in the
present context, it is not obvious how to extract a relevant baseline phase from it, so it relates only
to changes induced by the MOC, which we assume represent the entire curvature.

It should be also noted that Guinan Jr and Cooper (2008) ruled out that OHC sti�ness change
can be a likely cause of the click responses they obtained, which revealed fast inhibition (of the
amplitude) after the �rst half cycle, whereas the sti�ness changes slowly. However, the slow phase-
modulation e�ect that we saw was predicted regardless of amplitude inhibition that may or may not
appear within a few cycles. What more, the very slow phase modulation has exactly the e�ect we
expect to have from such a nonlinear system.

Radial displacement of inner hair cell stereocilia

Traditional methods of measuring the response of the organ of Corti to external stimuli have focused
on the transverse movement of the of the BM (see Figure 2.3). Using the mechanical properties
of the cochlear partition, it is then possible to deduce the shear force that acts on the IHCs, which
causes their movement in the radial direction. In a study by Zosuls et al. (2021), ex-vivo samples of
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Figure 11.9: Phase data (squares) from ex-vivo gerbil cochleas, reproduced from Figures
4F (1 kHz), 4G (3 kHz), 3G (37.5 kHz), and 3H (42.5 kHz) in Zosuls et al. (2021). The
original abscissas were a function of distance from the CF with a range of ±200 µm, but are
here converted to frequency (and hence linearized), using cochlear scaling parameters from
Greenwood (1990) (see Eq. 2.1 and �2.5.2). The quadratic phase �ts for the points around
the center frequency are plotted with solid lines. Note the di�erent ordinate ranges of the
di�erent subplots.

gerbil cochlea were used to directly measure the radial motion of the IHCs, which were stimulated by
mechanically actuating the BM using a probe that was placed under the outer pillar cells, and whose
longitudinal position could be adjusted in increments of 2 micrometers. An inverted microscope with
stroboscopic imaging and custom digital image processing were used to record the �ne motion of the
stereocilia in resolution of 8 nanometers. While the measurement was done on a small subsection
of the organ of Corti at a time, its mechanical and biophysical properties were shown to be close
enough to live animal and intact conditions, which would yield data that is su�ciently valid. We
assume that the OHC section of the organ of Corti around the CFs was intact in all cases. Four
measurements are presented in Zosuls et al. (2021), which provide the spatial response function
of the IHC displacement, including the phase as a function of (longitudinal) distance from the CF
along the BM. At four frequencies, 1 kHz, 3 kHz, 37.5 kHz, and 42.5 kHz, the phase function is
presented and in all cases it shows a maximum at the CF position, in what could be well approximated
using quadratic phase modulation. The relevant data is reproduced in Figure 11.9. Note that the
equivalent sound pressure level that would have produced the mechanical actuation here is unknown.

Vibration �hotspots� in the organ of Corti

Using high-speed optical coherence tomography imaging of the gerbil's organ of Corti, Cooper et al.
(2018) found that the vibrations between the BM and reticular lamina exhibit �hotspots� in the
region between the Deiters cells and the OHCs. In phase measurements along the path between the
two surfaces (the BM and reticular lamina, see Figure 2.3), the spatially and spectrally dependent
phase function (relative to the BM) clearly oscillated around the hotspot, before it returned to about
zero�amounting to a symmetrical phase modulation that may have a quadratic component. The
degree of modulation depended on frequency and on the exact path that was imaged in the organ
of Corti, which in turn determined the modes of vibration that were imaged. In one case in which
a transverse path was tracked, the modulation was positive (about 0.1 cycle), tuned to the CF (23
kHz), and decreased symmetrically at lower frequencies (Cooper et al., 2018, Figure 7c). At CF of
40 kHz and a slightly di�erent path with a longitudinal cross-section, the modulation was negative
(minimum -0.15 cycles) at low frequencies, but rather shallow and mistuned at the CF (Cooper
et al., 2018, Figure 8f). If these results can be generalized, then a traveling wave propagating from
the BM to the reticular lamina is subjected to an internal phase modulation. Furthermore, in some
cases the modulation may appear to have never happened if measured at the BM or reticular lamina
alone. Similar phase patterns were also recorded in mice using related methods, only that the phase
does not return to its initial value between the BM and the reticular lamina / tectorial membrane
(See, Dewey et al., 2021, Figures 1G, 1H, and 3A).
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Figure 11.10: Displacement phase di�erence between the BM and OHC motion in the gerbil,
as a function of measurement angle, and hence of longitudinal part of the trajectory in the
organ of Corti. The phase data is replotted after Figure 2e in Meenderink and Dong (2022).
Best frequencies for each plot was di�erent for the BM and for the OHC site and they are
marked with left pointing and right pointing red triangles, respectively, after Figures 2c and
2d in Meenderink and Dong (2022). Angles varied between −30◦ and +30◦, as are marked
beside each quadratic plot �tted. The input level of the stimulus was 30 dB SPL.

Angle-dependence phase measurements of the organ of Corti

In a study by Meenderink and Dong (2022), the phase of the motion of the organ of Corti was
measured in vivo using optical coherence tomography as a function of the angle between the laser
beam and the longitudinal direction of the BM. This angle relates to di�erent acoustic paths within
the organ of Corti, whose angular dependence suggests that the OHC motion have a non-negligible
longitudinal component. The phase was measured along di�erent points between the BM and the
OHCs in the second turn of the gerbil's cochlea. The angle was varied between −30◦ and +30◦ and
produced a di�erent frequency dependence of the phase ϕOHC − ϕBM in every angle, similarly to
what was found in Cooper et al. (2018) and reviewed above. The phase has a clear peak, also at 0◦,
which may be therefore taken to have a quadratic component, as is seen in Figure 11.10. However,
as is shown in the next subsection, the curvature of the 0◦ measurement is in opposite sign to those
extracted from other studies, and only at angles of −30◦ appears to change the sign, whereas at
−10◦ the curvature becomes negligible. Furthermore, the discrepancy between the two CFs given
(for both BM and OHC positions) and the phase curvature center frequency, as exists in most other
measurements reviewed above, is relatively large and it is not clear which value should be used.

11.6.3 Estimation of the auditory time-lens curvature

From all the studies reviewed in � 11.6.2 that may be suggestive of a time-lensing function, only
the phase data in Cooper et al. (2018) is directly given in the time domain. Insofar as they can
be interpreted as a time lensing operation, both time- and frequency-domain representations have
almost the same mathematical form (complex Gaussians, but with di�erent signs of the argument;
Eqs. 10.33 and 10.29, respectively) and thus the procedures to extract their curvatures are about
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the same in all cases.
Wherever reported, the phase modulatory e�ect is dependent on level, although the spread is

small in the gerbil (Dong and Olson, 2013) and large in the guinea pig (Guinan Jr and Cooper, 2008).
To constrain the spread and match it to the levels we are working with, the average curvatures were
calculated from data points at 75 dB SPL or lower. Additionally, the quadratic �t was performed
as a rough approximation to the curves (that were converted from cycles to radians) that change
monotonically around the peak and were truncated where additional oscillations and phase shifts
became visible. The resultant �ts are displayed in Figures 11.7�11.10. The linear and constant terms
in the �ts are immaterial and were dropped in the subsequent analyses. The quadratic coe�cient
was readily applied in the time lens expressions to obtain the curvature and focal time in the time
domain using Eqs. 10.29 and 10.32 and in the frequency domain using Eqs. 10.33 and 10.32.

All phase-curvature data and derived focal times are shown in Figure 11.11. The data can be
readily clustered into two groups. High and positive curvature values s > 3 · 10−8 s2/ rad, with
corresponding focal times fT > 4 ms from Guinan Jr and Cooper (2008) and Zosuls et al. (2021),
and small-curvature (both positive or negative) data |s| < 3 · 10−9 s2/ rad and corresponding focal
times |fT | < 0.7 ms in Dong and Olson (2013) and Meenderink and Dong (2022). While the
data point at 24 kHz from Dong and Olson (2013) may be considered a mere outlier of the large-
curvature group, the sign changes and very low magnitude of the rest of the data points at 2-3 kHz
are completely distinct from the other low-frequency data. The low-frequency clustering may be
further supported by the fact that all of these data points came from the gerbil, which otherwise
yielded large-curvature values.

The large-curvature data were well �tted with a power-law model, whereas the focal time data
points were nearly constant (fT ≈ 20 ms) and were �tted with a linear function. However, the
independent modeling of these two linearly dependent variables are inconsistent, as the curvature
does not yield a constant focal point function. The other direction�of deriving the curvature from
the modeled focal time�does indeed yield a satisfactory �t (if only graphically) so that this �t will
be used throughout this section. The focal time for the gerbil and guinea pig is

fT,gg(f) = −2.06 · 10−8f + 0.0202 Hz (11.11)

for frequency in Hz and focal time in s. To obtain the curvature, we simply divide this expression
by 2ωc (a power law with exponent -1)

sgg(f) =
fT
2ωc

=
0.0016

f
− 1.639 · 10−9 s2 / rad (11.12)

The small-curvature data su�er from a dearth of frequency points, which may or may not be �tted
with a linear function. We note that while the two animals have comparable hearing ranges (Fallah
et al., 2021), it is possible that the phase measurement methods do not quantify exactly the same
process or anatomy, although this seems rather unlikely. While the two clusters seem to complicate
the analysis and make the data appear inconsistent, variable curvature is going to be perfectly
consistent with an accommodating hearing system, in analogy to the eye. This will be reviewed in
16.

11.6.4 Extrapolation of time-lens curvature to human hearing

Short of carrying out direct measurements of the human time-lens curvature values, additional
assumptions must be made in order to transform the animal data obtained to values that are valid
for humans. There are several approaches that can be taken based on the available data. For
example, the focal time curve appears to be approximately constant at 20 ms (large curvature).
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Figure 11.11: Estimated time-lens curvature (A,C) and focal time (B, D) in the cochlea of
the gerbil and guinea pig, based on four independent measurements (Guinan Jr and Cooper,
2008; Dong and Olson, 2013; Zosuls et al., 2021; Meenderink and Dong, 2022). The data are
clustered into two groups: large-curvature observations in panels A and B and small-curvature
in C and D. Each dot marker relates to a single level/curve that appears in Figures 11.7�11.10
and whose means are marked with circle. Mean values were used to generate the power-law
�t (red dotted line) for the large curvature (A) and a linear �t was used for the focal time
(B). For consistency between models, an additional �t to the curvature was generated from
the linear �t of the focal time and is plotted in solid black in A and is the one that is used
throughout the text. Linear �ts were used in C and D for the small-curvature data.

This constant may apply to all mammals, or be unique to the rather similar gerbil and guinea pig
(and likely other rodents), whose data coincided. A similar option is that the focal time of 20 ms
in these animals should map to the same area in the auditory brain as in humans and remain a
constant. Yet another option is that the phase curvature could be scaled just like other cochlear
parameters. For example, it may be scaled in accordance with the cochlear �lter bandwidths that
might also apply to the phase modulation function (in the previous versions of this manuscript, the
latter option yielded plausible values, despite limited data). A �nal option is that the curvature
we obtained depends primarily on the transverse cochlear geometry rather than on the longitudinal
place alone (i.e., on the tissue between the BM and the reticular lamina rather than on CF alone),
so it should be scaled accordingly. If a mechanism along the lines hypothesized in � 11.6.1 turns
out to be correct, then this last option may be the most precise. However, it depends on unknown
parameter values such as the sti�ness distribution in the organ of Corti, but its histological complexity
(Naidu and Mountain, 1998) de�es simple scaling and detailed cross-species values are not available.
Therefore, this approach will not be further pursued. The three remaining approaches to derive the
human curvature entail rather strong assumptions, so none of them will be completely satisfactory
before they can be cross validated with other methods and data.

Constant focal time

The large-curvature data in both gerbil and guinea pig yielded a nearly �at focal time as a function of
frequency, with only slight decrease at high frequencies (19.4 ms at 44 kHz), and unknown response
at frequencies lower than 1 kHz (20.2 ms). This relative constancy (±2%) may be a desirable
feature for the auditory system, so achieving it may be a design goal that applies to all mammals.
In this case we can take the same focal time curve and apply it to humans, but using the scaling
property between the gerbil and human cochleas, remap it to human frequencies and �nd the new
curvature that would produce it.

The focal time in Figure 11.11 B was �tted by the linear function in Eq. 11.11. We use the very
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same function, but now express the frequency as a function of relative cochlear place, as is shown
in Figure 11.12 D. The human focal time is then shown in Figure 11.13 B and follows the linear
function

fT,h(f) = −5.15 · 10−8f + 0.0202 (11.13)

The corresponding curvature is then obtained using Eq. 11.12 and is displayed in Figure 11.13 A

sh(f) =
−5.15 · 10−8f + 0.0202

4πf
(11.14)

Analogous focal time target

A stronger assumption that may be invoked to derive the focal time is that it points to a region
in the auditory system that should be analogous in the gerbil, guinea pig, and human. In evoked
potential auditory electrophysiology, the 20 ms value is considered a middle latency response
(MLR) potential, whose latency lies between the brainstem (ABR) and cortical potentials (Picton
et al., 1974). The morphology of the MLR varies between animals, as it also depends, among others,
on the individual animal, the stimulus used to obtain it, its intensity, how the recordings are �ltered,
and how the electrodes are placed, which itself is suggestive of multiple generators that produce
some of the peaks in the MLR (e.g., McGee et al., 1991; Musiek and Nagle, 2018). The generators
are thought to lie in the thalamocortical pathways, but there is also strong evidence that the inferior
colliculus plays a role in the early MLR peaks (McGee et al., 1991). In the adult gerbil, three positive
peaks are distinguished around the 20 ms time frame, which measured at the temporal lobe: positive
peaks at 11 ms (wave A) and at 25 ms (wave C), and a negative peak at 16 ms (wave B) (Kraus
et al., 1987). However, these values vary between studies, so it is not uncommon to �nd wave B
peaking at around 20 ms and wave C at 35 ms. When measured at the midline, the morphology
changes and there is a negative peak M− at -10.5 ms and a positive peak M+ at 19.2 ms. The
human MLR morphology is less complex and it involves a �rst negative wave Na with a peak at
about 12-21 ms and a �rst positive wave Pa at about 21-38 ms, followed by second wave with Nb
and Pb. The exact human generators are also in doubt, but the Na is sometimes thought to arise
in the midbrain (IC) (Hashimoto, 1982; McGee et al., 1991), or in the thalamocortical pathways,
in which case it may be centered in the medial geniculate body (MGB) of the thalamus, as well as
other subcortical regions such as the reticular formation (Musiek and Nagle, 2018).

It seems that the human Na potential is closest to the M− potential in the gerbil and guinea
pig, both in generator site and in latency (McGee et al., 1991), which may suggest thatM+ and Pa
are also analogous. Given the variance in the latencies that appear in literature for all waveforms,
it will be di�cult to precisely determine which latency in human would be most correctly mapped
to 20 ms in gerbil, but anything between that same value and, say, 25-30 ms, may be adequate to
bracket the actual focal time. This means that the above solution may be adapted as is to humans,
but a range of focal times around that value may be useful to look at. As can be seen in Figure
11.13, the constant di�erence leads to a relatively modest change in the curvature itself.

Filter bandwidth scaling

Normally, we would like to take advantage of the scaling property of the cochlea, which enables the
transformation of quantities according to their relative distance along the basilar membrane or their
characteristic frequency (�2.5.2). While the CFs associated with the time lens can be transformed
easily, we do not know if and how the curvature scales in the normal cochlea. However, the model
that was obtained in Eq. 11.12 is a function of frequency, as are all scalable cochlear parameters.
To tie the animal curvature data, di�erent proxy variables for scaling the curvature can be conceived
aside from frequency. A plausible scaling can be conjectured that is tied to the bandwidth of the
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auditory channel that is related to the time-lens CF, even though the time lens itself functions as an
all-pass �lter that needs not obey the same scaling rule as the bandpass �lters. Indeed, it has been
recently shown that the bandwidth does not change signi�cantly along the active path between the
BM and OHCs in both gerbils and guinea pigs�the same area that corresponds to the vibration
hotspot where phase modulation seems to take place (Fallah et al., 2021, Figure 9F and 9G). As
we apply this particular scaling, we are confronted by additional uncertainties regarding the correct
bandwidth values that should be used for animals and human.

Guinea pig and gerbil Q10 spread

We can break down the uncertainty in the �lter bandwidth into that related speci�cally to the guinea
pig and gerbil and that related to humans. Conveniently, the gerbil and guinea pig have audible
frequency range that appears to be close enough to one another (Figure 11.12 C; Greenwood, 1990),
so combining their few available data points together was preferred here, for simplicity. Similar logic
applies to the channel bandwidth, as is seen below.

Most animal frequency selectivity data are based on neural tuning curves, which directly relays
the e�ect of cochlear processing. They are usually characterized using the 10 dB bandwidth (Q10),
as is plotted in Figure 11.12 A and B for the three species. For the gerbil, the most detailed auditory-
nerve tuning curves data are available from Müller (1996), which reveal a substantial spread that
re�ect the broad sample of tuning curves and is marked on Figure 11.12 A. The con�dence intervals
(± 1 standard deviation in the plot) are nevertheless consistent with estimates based on data
modeled by Kittel et al. (2002) and Ruggero and Temchin (2005), as can be seen in the �gure.
Unfortunately, there are almost no Q10 data available directly for the 37.5-42.5 kHz basal frequency
range that was targeted in Zosuls et al. (2021). Therefore, while the distribution provided by Müller
(1996) in tabular form was cut o� at 32 kHz, the additional three data points of higher frequencies
were available in his measurements and are used to form a rough estimate of the bandwidth at
these frequencies. From Muller's measurements the bandwidth dependence on frequency in gerbil
decreases rather than increases above 20 kHz. In similar measurements of the mouse Q10 a similar
kink in the bandwidth curve is observed at around 30 kHz, but increases again by 50 kHz (Taberner
and Liberman, 2005). Ruggero and Temchin (2005) have also provided a trend line for the guinea
pig, which is quite similar to that of the gerbil�a similarity that repeats in many species regardless of
their cochlear dimensions (Ruggero and Temchin, 2005). These trend lines are still contained within
the con�dence intervals by (Müller, 1996). Therefore, the guinea pig model will be implemented as
a �rst-order approximation for a usable bandwidth scaling as a function of frequency (Figure 11.12
A).

Frequency selectivity in humans

While the auditory nerve tuning curves are frequently considered to be the gold standard for the
peripheral �ltering estimation, accessing them in humans is possible only post-mortem�after the
cochlear nonlinearity disappears. Thus, the live neural tuning curves are unknown in humans and
therefore require an animal reference, whose bandwidth can be compared and extrapolated between
methods and species. However, the human bandwidth that should be paired with the gerbil's and
guinea pig's Q10 is uncertain, as there has been an ongoing controversy in literature with regards
to the relative sharpness of the human auditory �lters. This is a twofold controversy, in fact, which
relates to the absolute �lter bandwidth in humans, as well as to the relative bandwidth compared
to other mammals.

According to several studies, human hearing has a superior frequency resolution compared to
other mammals, perhaps except for other primates (e.g., Shera et al., 2002; Oxenham and Shera,
2003; Shera et al., 2010; Joris et al., 2011; Verschooten et al., 2018; Sumner et al., 2018; Burton
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Figure 11.12: The auditory �lter bandwidths, expressed as Q10, of the Mongolian gerbil and
guinea pig, and human, as well as their cochlear scaling functions. Left: Animal Q10 data
were collected from several sources, namely from gerbil and guinea pig models by Ruggero
and Temchin (2005, Figure 6A) that are based on several auditory nerve tuning function
datasets and allow for easy extrapolation across the audible range, on modeled gerbil data by
Kittel et al. (2002, Figure 4), and on extensive gerbil dataset in Müller (1996, Figure 4 and
Table 1), including con�dence intervals that are marked with dashed lines at the ±1 standard
deviation. Middle: In humans, the sharpest �lters are based on Oxenham and Shera (2003),
who �tted psychoacoustic data with the power law QERB = 11f0.27 (f in kHz), which can
be multiplied by a factor of 0.52, to convert to Q10 (Verschooten et al., 2018; this factor
can be also directly computed from the �lter models in Oxenham and Shera, 2003). The
broadest �lter estimates are derived from psychoacoustic estimates by Glasberg and Moore
(1990) of the equivalent rectangular bandwidth (ERB). Medium-sharp estimates are based on
Verschooten et al. (2018, Figure 1) and on Ruggero and Temchin (2005, Figure 6). Right:
The frequency to relative cochlear functions of the three animals based on the scaling law
(Eq. 2.1) by Greenwood (1990).
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et al., 2018; Walker et al., 2019). Other studies found that the �lters are equally sharp for all
mammals (Shofner et al., 2005; Ruggero and Temchin, 2005; Siegel et al., 2005; Ruggero and
Temchin, 2007; Eustaquio-Martín and Lopez-Poveda, 2011; Lopez-Poveda and Eustaquio-Martin,
2013a; Manley and van Dijk, 2016) and that they share other common features with vertebrates in
general (Manley et al., 2015). These conclusions depend on the speci�c methods employed in each
study, as well as on the theories or models used to interpret them, which in themselves are often
not in consensus. For example, some results rely on stimulated-frequency OAE data (Shera et al.,
2002) or spontaneous OAE (Manley and van Dijk, 2016), which require a theory to interpret them.
Another example is from studies that involve either simultaneous masking or forward masking in
notched-noise data, which requires control of nonlinear suppression and level dependence, as well as
a clear understanding of the operation of central processing (Oxenham and Shera, 2003; Ruggero and
Temchin, 2007; Eustaquio-Martín and Lopez-Poveda, 2011; Lopez-Poveda and Eustaquio-Martin,
2013a; Verschooten et al., 2018). Yet other experiments relied on pitch discrimination tasks that
require some involvement of central processing as well (Shofner et al., 2005; Walker et al., 2019).

Some human Q10 modeled data from di�erent sources are presented in Figure 11.12 (middle),
which highlights the two extremes of sharp and broad �ltering. Both the bandwidth and the frequency
dependence are markedly di�erent between studies. Sharp �lter responses were found in Oxenham
and Shera (2003) using forward-masking notched-noise psychoacoustic experiments, which contrast
with broad �lters based on simultaneous-masking notched noise by Glasberg and Moore (1990).
Additional compound action potential data from Verschooten et al. (2018, Figure 1) are plotted,
exhibiting sharp �lters at high frequencies and broad �lters at low frequencies. Modeled tuning curve
Q10 by Ruggero and Temchin (2005, Figure 6) are displayed as well, showing broad �lters, along
with extrapolation to 20 kHz105.

Human time-lens curvature estimation

The short reviews above indicate that there are several possible combinations of animal-to-human
scalings that can be invoked to derive the human time-lens curvature, but none that is clearly more
correct than the others. We will therefore aim to bracket the time-lens curvature in human and
then explore the curvature-space, as needed, throughout this work. To simplify this procedure, we
will use a single curve for guinea pig and gerbil �lter sharpness and apply the broad human tuning

105While it is not attempted here to resolve it, a few provocative remarks should be made regarding the human
frequency selectivity controversy. First, the very notion of a constant bandwidth that is fundamental in classical
linear �lters can be elusive in systems that exhibit suppression, emissions, feedback, level dependence, compression,
and other nonlinear e�ects. The ongoing attempt to remove the confounding e�ects of these phenomena and obtain
a reduced linear �lter �kernel� may belie the generality and hence the usefulness of the concept of bandwidth, which
drives this exploration in the �rst place, as each bandwidth applies only to a limited set of stimuli (see also, Thoret
et al., 2023). Inasmuch as the PLL theory put forth in �9 may turn out to be correct, it will most certainty change the
interpretation of some of the involved models (e.g, of OAEs and suppression) and their corresponding results. This
is so because the PLL appears linear only when it is in lock and it has several bandwidths associated with di�erent
modes of operation (Figure 9.2). If we additionally consider a passive linear �lter that precedes and �contains� the
PLL, then some quasi-linear e�ects may be obtained that produce broad �ltering, whereas under locked conditions,
the �ltering appear narrower. Combined with the �lter sharpness controversy, the discussion about the correct place
of �ltering is reminiscent of the dreaded second �lter problem, which suggested that there can be two stages of
bandpass �ltering in the cochlea. The problem was originally framed by Evans (1972) and Evans and Wilson (1973),
who noted that the neural and mechanical data available at that time did not match. It has been considered more or
less resolved ever since modern methods converged on very similar neural and mechanical results (Sellick et al., 1982;
Khanna and Leonard, 1982). However, recent in-vivo measurements of vibrations within the organ of Corti have
shown that the BM tuning is not as sharp as that recorded on the reticular lamina (Ren et al., 2016a), which may
be interpreted to show the existence of a second �lter after all. See Cooper et al. (2008) for a historical review and
Bell (2005) for an alternative point of view. In order to keep the temporal imaging and PLL theories independent,
we will leave the bandwidth interpretation question unanswered, at present.
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according to Glasberg and Moore (1990) and the sharp tuning from Oxenham and Shera (2003).
The following �rst applies the scaling only the large-curvature estimates (Figure 11.11 A and B).
The small-curvature estimates (Figure 11.11 C and D) for humans rely on less data and are simply
down-scaled in frequency from the animal data, as is presented below.

Large-curvature scaling In order to perform scaling of curvature, we will apply the following
procedure in all cases. The quality factor de�nition of a bandpass �lter is Q10 = fc/∆f , where
fc is the center frequency and ∆f is the bandwidth of the �lter at 10 dB down from its peak.
If the animal's bandwidth is ∆f , for a given Q, then we can compute the bandwidth-phase pair
(∆f, ϕ∆f/2) from the quadratic phase function �ts around fc (Figure 11.11). The argument of the
time-lens transfer function (Eq. 10.33) in the (one-sided) bandwidth corner frequency around ωc is:
ω2s = 4π2(∆f/2)2s = (π∆f)2s = ϕ∆f/2, where s is the animal's lens curvature. Therefore,

ϕ∆f/2 = (π∆f)2s = s

(
πfc
Q

)2

(11.15)

Next, we would like to use the obtained animal's phase values ϕ∆f/2 for the human's equivalent CF
and Q10 and extrapolate it from there for the entire spectrum using scaling. This can be done by
using one of the modeled animal bandwidths from Figure 11.12. We shall use the Müller (1996) Q10

data at frequencies above 1200 Hz, which extend all the way to 42.5 kHz (albeit with very few data
points), but use the Ruggero and Temchin (2005) function at lower frequencies in order to obtain
smooth extrapolation.

The calculation is repeated twice for the two di�erent human �lter types. First, the broad human
�lter bandwidth are, using the ERB approximation by Glasberg and Moore (1990)

∆fh,broad =
ERB

0.52
=

0.108f + 24.7

0.52
= 0.208f + 47.5 (11.16)

with the subscript h designating human values, and the conversion factor 0.52 was introduced to
obtain the equivalent 10 dB bandwidth (Verschooten et al., 2018) and can be gathered directly from
the �lter models in Oxenham and Shera (2003). Second, for the sharp �lter relations, using the
approximation from Oxenham and Shera (2003) and the same correction factor

∆fh,sharp =
f

Q10

=
f

0.52QERB

= 1.129f−0.73 (11.17)

Finally, using these relations, we can plug in the argument of the time lens again in

sh =
ϕ∆f/2

(π∆fh)2
(11.18)

This curvature applies now to a new CF that has the same proportionate distance on the human's
cochlea as the one on the gerbil's, according to their respective Greenwood function (Eq. 2.1)
(Greenwood, 1990). It allows us to compute the human's focal time using fT = 2ωcsh. In all cases
we have to carry over the sign of the curvature from the animals to humans�a positive curvature
both in the gerbil and in the guinea pig cases (the arguments in the frequency and time domain
time lens representations have opposite signs).

The large-curvature results are displayed in Figure 11.13. They show a large spread of possible
values of curvatures and focal times that are easily one order of magnitude apart between the
constant-focal-time model and the various scaled models. However, the spread tends to be largest
the lowest and highest frequency ranges, where the estimates rely on extrapolation and are much
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Figure 11.13: Human large-curvature mode time-lens estimates (left) and their respective
focal time (right) based on di�erent combinations of animal and human �lter bandwidths and
di�erent modeling assumptions. The �rst two curves are calculated based on gerbil to human
data scaling of the Q10, derived from data by Müller (1996) at high frequencies (> 1200 Hz),
and an extrapolated model by Ruggero and Temchin (2005) at low frequencies (< 1200 Hz).
The solid black curve applied the human broad auditory �lters based on Glasberg and Moore
(1990) and the narrow �lters in dash-blue on Oxenham and Shera (2003). The next three
curves in red are based on the assumption that the nearly constant focal time of the gerbil
applies to humans, as is with fT = 20ms (dash-dot), fT = 25ms (dash), and fT = 30ms
(dot). The last two curves are based on an earlier estimate of the curvature, when fewer data
points were available. They were also based on scaling according to Q10 and are plotted in
purple dash-dot for the broad �lters in humans and dash for the narrow �lters.

less reliable. Interestingly, the constant focal-time curvature estimate of 20 ms nearly coincides with
the broad-�lter curvature that was computed based on scaling at frequencies above 2000 Hz. The
choice we made about the animal �lter data made the bandwidth function jagged and the scaled
curves non-monotonic.

Small-curvature scaling The small-curvature estimates in Figure 11.14 are based on simple
scaling of the frequencies between the animals and humans of the two-point data obtained above,
using the respective gerbil and human scaling functions from Greenwood (1990). Here the focal
time and curvature are usually very close to zero and negative (−0.1 < fT < −0.5 ms), which is
2-3 orders of magnitude lower than the large-curvature mode estimates.

We will subsequently refer to these two estimates as the small-curvature time lens the large-
curvature time lens.

11.6.5 Discussion

While we were able to obtain estimates for the time-lens curvature that will turn out to be plausible
later in this work, this section may have been one of the most speculative part in the entire work
(not a small feat, admittedly). This is despite the relatively simple physical model it alluded to,
given the variable sti�ness of the BM.

According to the above analysis, the time lens is e�ectively a result of an active and nonlinear
function in the organ of Corti, which is naturally associated with the electromotility of the OHCs.
This explanation may coincide with recent physiological and psychoacoustic �ndings by Nuttall et al.
(2018), which conclusively determined that the place of envelope information generation is found
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Figure 11.14: Human small-curvature mode time-lens estimate (left) and its respective focal
time (right). As bandwidth scaling does not seem to apply to this limited dataset, the animal
data was simply scaled (translated) to human frequencies with curvature (left) and focal time
(right). The old small-curvature model from the previous version of this that applied to the
one data point from the gerbil at 24 kHz is shown in dashed red for comparison and shows
stark di�erence in magnitude and sign.

within the organ of Corti�between the BM and the reticular lamina�as a consequence of its
nonlinear distorting properties. This is exactly the e�ect we would expect to see following a time
lens�e�ectively a nonlinear phase modulator.

Inasmuch as phase modulation depends on the OHCs, their number in the healthy organ of Corti
of the di�erent animals is substantially di�erent: 11000�16000 in humans, 4600 in gerbils, and 2400
in guinea pigs (�2.5.2). While we do not know the exact e�ect of these large di�erences, they may
impact the sti�ness and its variability, and hence the degree of phase modulation that the OHCs
can generate.

Identifying a basic time lens mechanism and obtaining estimates of its magnitude will turn out
useful throughout this work, despite the inevitable lack of certainty in the estimation. It should be
recognized that a very simple imaging system may be designed without a lens altogether�a pinhole
camera that has only a small aperture instead of a lens (�4.2.1)�so the possibility that the auditory
system might be lens-less after all will be considered at several points later on.

Another challenge to the time lens is that its e�ect is not apparent in the auditory nerve and
other measurements. It may be because it is too small, too short, too slow, or too localized. The
choice of stimulus may also be critical in observing the time lens e�ect anywhere beyond the organ
of Corti. The e�ect of the phase modulation is subtle in the time domain when measured in the
auditory nerve because of the limited duration of the temporal aperture�a feature of the system
that is coupled to the �lter bandwidth and will be examined in later chapters in detail.

At least three things were neglected in the derivation of the lens that should be eventually
corrected in more re�ned analysis: compressive nonlinear dependence on level, asymmetry of the
curvature with respect to the carrier (or CF), and phase function components that are higher-order
than quadratic�perhaps contributing to the asymmetry. These will be brie�y explored in �15.9.

The values obtained for the focal time of the lens can be interpreted as the additional group
delay that would be required to cancel out the e�ect of the lens after the wave left it (Kolner,
1994b). Given that the input curvature is relatively small and the distances between the auditory
nuclei are short, the highest values obtained in the focal-time range of some models (> 100 ms)
appear to be grossly overblown to be compensated for by dispersion, as would be expected from an
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imaging system in sharp focus (�12). However, the interpretation of the extreme values is going to
turn out to be nontrivial, as it does not follow the same design logic as the eye.

It will be argued much later in this work that the lens curvature is variable by design through
accommodation in both visual and auditory systems. Accepting that the time-lens curvature (and
associated e�ects) may be variable poses a complicating factor to modeling, though, because we do
not know what is the �relaxed� or �normal� position for the time lens. In the spatial lens of the eye,
this position is referred to as emmetropic whereby the lens focus is set to �in�nity�. E�ectively,
objects that are 6 m or farther from the eyes are at in�nity (e.g., Charman, 2010).

While we do not know what was the root cause for the di�erence between the animals that
exhibited small-curvature vs. large-curvature time lens estimates, it is not impossible that the
state of the accommodation at the time of measurement had that e�ect, although with unknown
experimental conditions that have led to it. Hypothetically, this is supported by the study by
Guinan Jr and Cooper (2008), whose results were used to derive large-curvature values in �11.6.2.
The only obtainable data from that study was relative, but we used it as absolute curvature for
lack of an absolute reference. The corresponding underlying assumption in doing so is that the
uninhibited MOC produces nearly zero curvature. This is not too di�erent from the small-curvature
values we got, which �uctuated around zero.

Finally, the physiological mechanism of achieving phase modulation that was explored here is yet
another function that is stacked on the organ of Corti, in addition to the PLL that was examined
earlier. The two functions do not necessarily have to interact and they may be realized by di�erent
parts of the organ of Corti or the OHCs. Speci�cally, the phase modulation may be a result of
the bottom part of the basilar membrane, whereas the PLL is dependent on the hair bundle and a
speci�c feedback path through the OHC soma. Both functions assume a role for the somatic motility
of the OHCs, which supplies power either to the PLL loop gain, and to the sti�ness modulation.
Independently, the operation of the OHC is thought to utilize the very same mechanisms to achieve
its ampli�cation function.

11.7 Neural dispersion

Having estimated the dispersive properties of the BM and the OHCs, we are left with the �nal
part of the periphery�the IHCs and the auditory nerve�before entering the central nervous system
at the brainstem. In a single-lens imaging system, as the auditory system likely is, this segment
behind the lens is most conveniently modeled as a single dispersive unit. This is true even if it
combines several media with di�erent dispersive properties (as is the cochlear group-delay dispersion
u), for the reason that dispersion is mathematically additive (see �B.3). However, the transduction
of the sound wave to neural action potentials represents a fundamental departure from the more
explicitly-physical mechanical waveforms.

Di�erent paradigmatic approaches are common in the modeling of the acoustic-to-neural trans-
duction. In signal-processing-oriented models, the hair bundle motion and neural transduction cou-
pling are usually accounted for by signal recti�cation and low-pass �ltering, while still treating the
signal as continuous. These two operations entail amplitude demodulation, or (real) envelope ex-
traction (� 5.3.2). As the paratonal equation is already framed in the modulation domain, these
operations may be neglected, as long as the carrier informs the envelope. In other words, tono-
topy dictates that even a demodulated response would always be associated with its high-frequency
carrier. The approach in neuroscience is usually to conceptualize neural transduction as a coding
operation, which emphasizes the representational transformation that the physical referent (e.g., the
mechanical wave) undergoes (Perkel and Bullock, 1968). Instead, in the present work, we would
like to employ a more primitive operation that conceptually precedes coding (in the informational
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theoretic sense)�sampling. This ensures that information is conserved in the process through dis-
cretization, which can also provide several insights into the system processing for later (see �14 for
a more in-depth discussion). It simpli�es the discussion by avoiding coding intricacies such as the
spontaneous rate of the di�erent auditory �ber types (high, medium, or low; Liberman, 1978).

11.7.1 The inferior colliculus is the candidate auditory retina

Having delineated its reach and contents, the analysis of the �nal segment of the dispersive path
of the sound signal boils down to a single question: what is the destination of the signal? Or
alternatively�if a complete imaging system view is adopted (as will be shown in �12)�what is the
�screen� on which the �nal image is �projected�? Candidate areas can be argued for given their
key roles in auditory perception and processing: the auditory nerve, the cochlear nucleus (CN), the
inferior colliculus (IC), and the primary auditory cortex (A1). We would like to argue that the IC is
the destination and its role can be likened to an �auditory retina�106. There are several arguments
that can be made to support this claim, each from a di�erent standpoint. The �rst two arguments
complement those that were made in �1.5.2:
1. Anatomical analogy�The retina is where an optical image is formed, which the visual system

can then process, whereupon it culminates in visual perception. The retinal connection to the
brain is unique among the peripheral senses, because the second cranial nerve (the optic nerve),
which connects to the retinal ganglion cells, is in fact part of the central nervous system that
projects from the forebrain (Rea, 2014, pp. 7-10). Speci�cally, the optic nerve is projected from
the lateral geniculate body (LGB) in the thalamus and from there to the visual cortex in the
occipital lobe. Only a small fraction of the optic �bers bypass the LGB and lead to the pretectal
nucleus and to the superior colliculus (SC)�two midbrain structures that are responsible for
various re�exive visual functions. In analogy, the primary projection from from the IC is also
to the thalamus�to the medial geniculate body (MGB), which is considered the main nucleus
between the IC to A1 (Malmierca and Hackett, 2010). Incidentally, some of the IC subnuclei
project to the SC and the pretectal nucleus as well (Kudo and Niimi, 1980). More intricate
analogies between the IC and the retina exist, based on function and processing (Kvale and
Schreiner, 2004).

2. System physiology�All information from the CN, the superior olivary complex (SOC), and the
lateral leminiscus (LL) converges in the IC (Aitkin and Phillips, 1984, demonstrated on the
cat), with very few exceptions of �bers that directly project from the CN to the contralateral
MGB (see Figure 2.4). Its importance is also manifested in the number of neuron cells it has
compared to other subcortical auditory structures�an average of 373,000 in the rat, which is
one or two orders of magnitude more than in the CN, the SOC, the LL and the MGB (Kulesza Jr
et al., 2002). Also, the IC appears in the auditory system of all mammals and in birds (Casseday
and Covey, 1996), and has a homologous structure (the torus semicircularis) in the midbrain
of amphibians, reptiles, and �sh (Bass et al., 2005). Finally, out of all the brain structures
(including all auditory nuclei), the glucose metabolized by the IC is the highest�about twice
as high as the superior colliculus in rhesus monkey (Kennedy et al., 1978) and in albino rats
(Sokolo� et al., 1977).

3. Function�Another unique feature of the IC is that di�erent signal processing pathways con-
verge to organized maps that share the same tonotopy. In the IC, tonotopic maps are organized
in characteristic iso-frequency laminae, which are thought to be orthogonal to a further map
of periodicity that is then propagated to A1 (Langner, 1997). This property of the IC suggests

106This term has been used once in literature to analogize the function of the �sh ear, but with no particular
reasoning for why that is so (Yoda et al., 2002).
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that the information necessary for cortical processing is complete at that stage, even if cer-
tain dimensions (e.g., spectral, temporal, and spatial) of the stimulus are separately processed
downstream.

4. Information�The coding of the modulation transfer function in the brain distinctly shifts in the
IC to a rate code from a temporal code that is more characteristic in the CN and SOC (Casseday
and Covey, 1996; Joris et al., 2004). It suggests that a maturer degree of signal processing may
be possible at this stage, which was unavailable in the brainstem nuclei. It may be deduced, for
example, from studies in bats who could still echolocate in part after the ablation of their A1
(Suga, 1969a), but not at all after ablation of their ventral IC (Suga, 1969b). From a system
design point of view, it seems e�cient that there should not be a change in coding before the
imaging process is complete.

11.7.2 The existence of the neural dispersion

We would like to estimate the dispersion of the auditory signal path from the back of the time
lens�presumably in the organ of Corti at the reticular lamina before being coded in the IHCs�all
the way to the IC. This should include the e�ects of the auditory nerve and the IC, as well as the
intermediate pathways in the brainstem. Unfortunately, it will be impossible to isolate the response
of the IHCs from the previously calculated live cochlear dispersion. The synaptic delay of the auditory
nerve is often taken to be constant (e.g., Palmer and Russell, 1986; Ruggero and Rich, 1987), which
would mean that its group delay and group-delay dispersion are both zero. This leaves us with the
dispersive contribution of the auditory nerve �bers and the central nervous system as the dominant
component of this dispersion. Hence, we refer to it as neural dispersion, even though it begins in
the cochlea.

Neural dispersion has been hypothesized a number of times in the past (e.g., Neely et al., 1988;
Fobel and Dau, 2004; Harte et al., 2009), but was ruled out more often than not. For example,
Neely et al. (1988) estimated the di�erence between the latency of wave V in ABR and OAE
measurements of two evoked-response datasets with similar tone-burst stimuli (Gorga et al., 1988;
Norton and Neely, 1987). In theory, the ABR includes both the mechanical and neural pathways,
whereas the OAE response includes only (approximately double the) mechanical path (more about
it below). The group delay was estimated according to the two measurements and a good match
was obtained to within ±2 ms (Neely et al., 1988, Figure 3). The two estimates were assumed to
di�er mainly due to the neural pathway that has a constant delay. The authors postulated that any
signi�cant neural e�ect is practically eliminated at low stimulus levels, as the two measurements di�er
only by a frequency-independent delay. Indeed, the ABR and OAE group delay measurements appear
to have converged. In another example, the group delays of waves I, III, and V were compared using
derived-band ABR and were found to vary by a constant, which implied that they are determined
by the auditory nerve alone and any frequency-dependent group delay propagates downstream from
there, unchanged (Don and Eggermont, 1978).

Even though auditory neural pathways may appear to be dispersionless, they are physical trans-
mission paths and as such must have a �nite dispersion. To the best knowledge of the author, the
only data that explicitly demonstrate it is from a study by Morimoto et al. (2019). The objective
of that study was to maximize the peak response of either wave I or wave V of a chirp-evoked ABR
measurement, which was designed to compensate for the cochlear dispersion and concentrate as
much energy as possible at the peak of wave V (Elberling and Don, 2010)107. Using data from 25

107The chirp-evoked electrophysiological measurement was originally introduced by Shore and Nuttall (1985), in
an attempt to counter the asynchronous auditory channel activation due to dispersion in click-evoked compound
action potential measurement. The underlying principle here is essentially the same as chirp radars and ultrashort
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normal-hearing subjects, di�erent chirp slopes were found that maximized the two wave peaks, albeit
with large individual variation. It suggests that the path between the areas that corresponds to wave
I (the auditory nerve) and wave V (the contralateral LL or the IC) is (group-delay) dispersive108.
Note that these frequency-dependent di�erences between wave I and wave V delays were not reliably
reproduced, as observed using the same chirps and other click stimuli in derived-ABR measurements
by (de Boer et al., 2022). If neural dispersion di�erence between waves I and V appeared at all, it
was relatively small (especially on the group level) and its e�ect was not monotonic in frequency.

More indirect evidence for neural dispersion can be gathered from octopus-cell recordings in the
mouse by McGinley et al. (2012). The octopus cells in the posteroventral cochlear nucleus (PVCN)
work as broadband coincidence detectors (�8.5), where dendrites from di�erent cochlear locations
converge. The di�erent dendrite lengths compensate for the across-channel delay that is caused
by the cochlear dispersion and thereby allow for the temporally precise detection to take place,
e�ectively time-compressing the broadband output from the cochlea109. As these �ndings apply
only to one speci�c cell type and function, it is unknown at this stage if and how they should be
generalized to the other brainstem nuclei. This may be reinforced by �ndings from the big brown
bat, which showed that tuned units had a range of latencies that grew from the CN (smallest) to the
LL, and through to the IC (largest) (Haplea et al., 1994). These di�erential delay lines inevitably
create neural dispersion, although with patterns that may be di�cult to pin down using a single
parameter.

Simultaneous measurements of evoked ABR and TOAE may be also used to show the existence
of neural dispersion, as there is generally a small but consistent di�erence between the slopes of the
two. An example of this di�erence was displayed in Figure 11.5, where the unused OAE and ABR
estimates of cochlear group delay and group-delay dispersion are plotted. If the two represented
only cochlear dispersion, as standard theory has it (e.g., Neely et al., 1988), then they would only
di�er by a constant delay that does not a�ect group-delay dispersion. However, their slopes are
di�erent, which means that their group-delay dispersions are frequency dependent and di�erent
from one another. This subtle di�erence opens up the possibility of computing the neural dispersion
from the di�erence between these ostensibly identical estimates of the ear's group delay. Hence,
di�erentiating the group delay di�erence between ABR and OAE measurements (using Eq. 10.25)
should give us the neural group-delay dispersion v

v =
β′′
2ζ2
2

=
1

2

d

dω
(τgABR − τgOAE) (11.19)

where the frequency-dependent group delay of the ABR is τgABR and of the OAE is τgOAE.
To make things more complicated, though, the interpretation of the various types of OAEs,

the TOAE amongst them, requires a model that identi�es both the generator and/or the source
of re�ection in the cochlea that accounts for the return travel time of the emission. As in other
cochlear research questions, there is no universal agreement about these issues. The main point of
controversy is determining whether di�erent types of evoked OAEs occur due to re�ections from
irregularities in the cochlear geometry and mechanics, or rather from active nonlinear mechanisms

pulse generation, where inverse operations are used to compress otherwise long pulses whose power is too dispersed
(�10.1).

108Note that the IC itself does not produce strong enough electric �eld that can be detected with ABR due to its
disorganized layout. Hence, wave V corresponds to an earlier timing than would characterize the central nucleus of
the IC�usually attributed to the area between the LL and the IC (Hall III, 2007, p. 45�46).

109Recent recordings of the octopus cells in gerbils uncovered high temporal precision that is also sensitive to the
direction of linear frequency sweeps around frequency �hot spots� (i.e., tuned input �bers from the auditory nerve)�
a cellular detection mechanism that appears to be independent of the coincidence detection mechanism (Lu et al.,
2022).
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that act as sources, or some combination of both (e.g., Probst et al., 1991; Shera and Guinan Jr.,
2008). It appears that both re�ection and nonlinear models identify the OHCs as the site of (re-
)emission. Even then, there remains an additional uncertainty regarding the return path of the
reverse wave, which is factored into the group delay estimation. If a reverse wave returns through
the BM, then we can expect that the group delay is double the forward path, τOAE(ω) ≈ 2τBM(ω)
(Shera and Guinan Jr, 2003). However, in species where the group delay could be measured directly
from the mechanics, it turned out smaller than this prediction (e.g., for the chinchilla the factor is
1.86 instead of 2; Cooper and Shera, 2004). It suggests that at least some of the energy may be
returned to the middle ear in another (faster) path di�erent from the forward path. In the present
context, the important distinction is between an OAE measurement that includes or excludes the
dispersive contribution of the phase-modulating organ of Corti, both in the forward and reverse
paths. While resolution of this controversy is beyond the scope of this work, using the OAE in Eq.
11.19 as though it includes the time-lens curvature seems to work reasonably well and does not
require a correction at this stage. However, we note that there is an unknown error expected using
the general method of the neural dispersion estimation based on Eq. 11.19.

11.7.3 Neural dispersion estimation

The neural dispersion will be estimated here based on Eq. 11.19 and on the small but persistent
di�erence in group delay of ABR and OAE measurements found in literature. Comparable measure-
ments of OAE and ABR were reported several times, but despite the qualitative similarity of the
results, they are numerically inconsistent. This inconsistency is exacerbated upon di�erentiation,
which is where group-delay dispersion arises.

The OAE and ABR measurements by Neely et al. (1988) were originally �tted to a level-dependent
power law that has also been adopted in several other studies later (see also Anderson et al., 1971)

τg = a+ bc−if−d (11.20)

where i is the ratio of the input in dB SPL to 100 dB SPL, and f is given in kHz. The intercept
a was added to account for the constant neural delay, typically set to 5 ms. The constants b, c,
and d are provided in Table 11.1110. The corresponding group delay curves by Neely et al. (1988)
as well as additional measurements that used the same power law form as Eq. 11.20 are all plotted
in Figure 11.15 (left) and are summarized in Table 11.1. Studies were generally preferred if their
ABR and OAE responses were recorded simultaneously, or at least had individual-subject-matched
data111. The resultant group-delay dispersions of these �ts (Eq. 11.19) are shown on the right plot
of Figure 11.15.

Since neural dispersion is currently a hypothetical property of the auditory system, the results
from the study by Morimoto et al. (2019) were used to cross-validate it. The group delay of the
chirps that were used as stimuli compensated for the neural group delay of the form given by Elberling
and Don (2008) (�CE-chirp�):

τg = 0.00920
nk

9
f−0.4356 (11.21)

with the frequency f in Hz, and the integer parameter nk varying between 0 and 9. By using
chirps with the corresponding negative group delay, it was found that nk = 4 maximized the wave-I
response and nk = 7 maximized the wave-V response. Thus, the same method as above can be

110Note that the group delay level dependence itself appears to be frequency dependent, as was recently shown for
ABR measurements by Huang et al. (2022).

111Other ABR and OAE estimates that were not necessarily �tted by power laws were compiled in Moleti and Sisto
(2008), but were not explored here.
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Figure 11.15: Neural group-delay dispersion estimates based on power-law �ts from literature.
Left: Cochlear (and neural) group delay �tted according to the power-law functions summa-
rized in Table 11.1 (ABR�solid curves, OAE�dashed curves), omitting constant delays. Note
that the curve for the 2 ms OAE condition of Rasetshwane et al. (2013) is identically 0 and
does not appear on the plot. Two curves of frequency-dependent tone bursts are marked in
the legend with (f). Right: The (negative) neural group-delay dispersion based on di�erences
between the paired ABR and the OAE curves, which were taken as the neural group delay (Eq.
11.19). The dash-dot-star green curve marks the τgV − τgI dispersion according to Morimoto
et al. (2019), which sets a lower bound for the complete neural dispersion path. Solid curves
mark the (desired) negative dispersion, whereas dotted curves are positive.

Study b c i d Level
(dB
SPL)

comments

Auditory brainstem response (ABR)
Neely et al. (1988) 12.9 5 L dB / 100 dB SPL 0.413 10�100 non-simultaneous ABR and

OAE
Harte et al. (2009) 11.09 1 1 0.37 66 Tone burst ABR, 0.5�8 kHz
Rasetshwane et al.
(2013, Table III)

9.99 5.1 L dB /100 dB 0.24 20�90 ABR, 2 ms tone bursts

11.47 5.05 L dB /100 dB 0.31 20�90 ABR, 2.83 ms tone bursts
13.89 6.17 L dB /100 dB 0.22 20�90 ABR, 4 ms tone bursts
12.63 5.34 L dB /100 dB 0.39 20�90 ABR, frequency-dependent

tone bursts
Morimoto et al.
(2019)

0.00920nk/9 1 1 0.4356 60 dB
HL, or
104 dB
SPL
(peak)

0 ≤ nk ≤ 9, f in Hz and
tg in s; chirp ABR to �nd
maximum wave-I response

Otoacoustic emissions (OAE)
Shera and Guinan Jr
(2000)

0.15 1 1 0.5 40 OAE model was provided by
Fobel and Dau (2004)

Harte et al. (2009) 10.98 1 1 0.46 66 Tone burst OAE, 0.5�8 kHz
Rasetshwane et al.
(2013, Table V)

16.40 9.32 L dB /100 dB 0.00 20-90 OAE, 2 ms tone bursts

20.41 6.06 L dB /100 dB 0.37 20�90 ABR, 2.83 ms tone bursts
19.00 4.75 L dB /100 dB 0.04 20�90 ABR, 4 ms tone bursts
20.56 6.44 L dB /100 dB 0.34 20�90 ABR, frequency-dependent

tone bursts

Table 11.1: Summary of various power-law �ts found in literature for evoked otoacoustic emis-
sions or auditory brainstem response data according to the power law prescribed by Neely et al.
(1988), Eq. 11.20, where the frequency f is in kHz, and the group delay τg in milliseconds.
Wherever i ̸= 1, the fraction of the dB level L over 100 dB is used. Constant delays (e.g.,
5 ms neural delay) are omitted. ABR level dependence of group delay that was observed to
also be frequency dependent was modeled using a somewhat di�erent power law in (Huang
et al., 2022).
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used to estimate the group delay associated only with the wave-I to wave-V path, and di�erentiate
it once to obtain the respective neural group dispersion:

vV−I =
1

2

d

dω
(τgV −τgI) =

−0.4356

4π
0.00920

7− 4

9
f−1.4356 = −0.0001063f−1.4356 s2 / rad (11.22)

Ideally, this partial group-delay dispersion (thick green curve in Figure 11.15, right) is smaller than
the total path, |vV−I | < |v|, and has the same sign, which implies that the growth of the group-delay
dispersion is a monotonic function of neural distance. This reasonable (yet unproven) assumption can
be used as a key to select the negative group-delay dispersion results (solid curves in Figure 11.15),
over the positive ones (dotted curves in Figure 11.15), which rules out the positive, frequency-
dependent tone-burst measurements obtained by Harte et al. (2009) and Rasetshwane et al. (2013).
Incidentally, the method in the latter responses was deemed invalid due to stimulus duration depen-
dence (Ruggero and Temchin, 2007). Furthermore, the curve derived from Neely et al. (1988) and
Shera and Guinan Jr (2000) is also positive at low frequencies and becomes smaller than the wave-V
to wave-I data. This leaves the 2 and 4 ms �xed-rise-time responses by Rasetshwane et al. (2013) as
the most favorable candidates from which to obtain the neural group-delay dispersion. However, for
an unknown reason, the 2.83 ms �xed rise-time response Rasetshwane et al. (2013) did not produce
the desired curve, which was expected to lie between the 2 and 4 ms curves. This discrepancy
produces some uncertainty as for how con�dent we can be in the data using this method. However,
as will turn out, the remaining 2 and 4 ms neural group dispersion data from Rasetshwane et al.
(2013) both produced plausible values that could be employed in the rest of this work. Speci�cally,
the 4 ms dataset produces slightly better results and was used throughout.

11.8 Discussion

This chapter systematically analyzed the dispersive properties of the human auditory path from
the outer ear to the inferior colliculus (IC) in order to have plausible estimates of its group-delay
dispersion. While the possibility of dispersion should not be controversial anywhere in the system,
the segmentation process that leads to associating various elements in the system (summarized
in Figure 11.1) with di�erent measurements is not free of assumptions that may turn out to be
inaccurate. Nowhere has it been more conspicuous than in and around the organ of Corti, wherein
we hypothesized the time lens resides. As another layer of complexity, this work hypothesizes
a mechanism for phase modulation that can neatly function as a time lens, but has not been
explicitly measured to date. This adds up to the earlier theory that established a PLL function as
yet another role for the OHCs. While the e�ect on the present data is inconsequential in many of
the results obtained in the next chapters, at least some of these controversies will eventually have to
be empirically settled in order to be able to get better estimates of the dispersive system parameters.

Several simplifying assumptions have been made to be able to parse the system more e�ciently,
which will have to be relaxed when higher certainty is obtained. The two main ones are the neglecting
of all level considerations (data were obtained for low levels or 40 dB SPL, whenever possible) and
the treatment of the entire audio range as scalable, with no regard for anomalies of low or high
frequencies. Indeed, a correction will be required for frequencies below 500 Hz in some of the results
obtained later. Another simplifying and necessary assumption has been to treat the di�erent auditory
pathways between the brainstem and the IC as a single dispersive path. We do not know whether
the parallel processing of the brainstem is precisely timed, so that outputs from the two or three
branches (VCN, DCN, PVCN) simultaneously converge in the IC, but two studies were mentioned
that indicate that this may not be universally the case (Haplea et al., 1994; McGinley et al., 2012).
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Neural transmission codes the information carried by the mechanical waves from the cochlea
to the brain. As such, it was taken here as a proxy of a real physical process that has non-zero
dispersion, by de�nition (see �3.4.2). Whether the dispersion itself is a feature of the auditory code
or an epiphenomenon of its transmission is subject to future exploration. In this work, only the
latter alternative is directly explored�dispersion that is evident from brainstem potentials that are
not decoded, but are treated as aggregate activity that can be neurophysiologically localized.

An alternative derivation of the dispersion parameters will become possible at a much later stage
of this work�once the full theory is developed�using a battery of four psychoacoustic tests (�F).
With a limited pool of available data, most of the general trends observed above can be tentatively
cross-validated, as long as the parameters are allowed to be complex, so absorption becomes more
dominant. They suggest that at the lowest frequencies, one of the dispersion parameters�most
likely the time-lens curvature�changes sign. However, this psychoacoustic solution is not going
to be used in the text, as the majority of the studied e�ects can be studied qualitatively with the
parameters obtained above, and without the troubling inclusion of absorption in the theory.

All in all, we obtained estimates for the cochlear and neural group-delay dispersions that turned
out both negative. The time-lens curvature, in contrast, is positive. The combination of these three
frequency-dependent parameters will be used to explore the temporal auditory imaging equations in
the next chapters.
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