
Chapter 13

The impulse response and its

associated modulation transfer

functions

13.1 Introduction

At the end of the previous chapter, we saw how the �nite duration of the auditory temporal aperture
creeps into the auditory response to the Schroeder phase complex stimuli. We also saw how the
dispersion parameters of the system bound the aperture duration from below and that a Gaussian
function approximates its physiological shape very closely, except for a long one-sided tail. The
aperture shape, also called the pupil function, is of special signi�cance in imaging as it can be used to
fully describe the system's imaging resolution and its various imperfections. This treatment requires
the impulse response of the system (its point spread function in the optics jargon), which can be then
used along with the pupil function to obtain the modulation transfer function of the system. Things
get more complicated as a distinction has to be made between classes of imaging and signals�
coherent and incoherent�which requires having an appropriate coherence theory. Additionally, in
the hearing system, it is impossible to avoid the e�ect of nonuniform sampling on the image, which
has to be considered on top of the transfer functions.

To get a handle on the various functions associated with the imaging system response, we
begin from the existing impulse response function from Kolner (1994a), who derived it in complete
analogy to how it is done in spatial imaging (Goodman, 2017, pp. 169�174). The validity of the
impulse response depends on a local time-invariance property, concentrated around the carrier of the
traveling wave system. This is analogous to the space invariance that characterizes spatial imaging
systems about the optical axis, if the image magni�cation and inversion are factored out. When
space is divided to small isoplanatic patches, each patch is approximately space-invariant (Goodman,
2017, pp. 27 and 173). It should be underscored, though, that the auditory system is not exactly
time-invariant because of the stochastic nature of its neural sampling, which will have to be taken
into consideration in more advanced analyses. Nevertheless, we will neglect this complication at
present and derive the amplitude transfer function (ATF), the optical transfer function (OTF), and
the modulation transfer function (MTF) of the system�for focused and defocused, coherent and
incoherent cases�using a Gaussian pupil. Additional expressions for rectangular pupil will be derived
as well for later comparison. These derivations follow Goodman (2017, pp. 195�211), and to the
best knowledge of the author have not been introduced previously within temporal imaging theory
in optics.

In the �nal section, we will review the temporal modulation transfer function in the hearing
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274 13.2. The impulse response of the imaging system

literature and see how its various �ndings can be connected to the functions we derive here. We
shall argue that the nonuniform sampling of the system may no longer be ignored. We will also
point to how partial coherence has to be taken into consideration more rigorously within hearing.

13.2 The impulse response of the imaging system

The goal in the following is to �nd a time-invariant impulse response of the complete imaging system
as was presented in �12, so that it does not depend on the absolute time τ0 of the input pulse,
but rather on the time di�erence between the output and the input τ − τ0. This should enable the
standard convolution integral computation

a2(τ) =

∫ ∞

−∞
h(τ − τ0)a0(τ0)dτ0 (13.1)

for the envelope input a0(τ) and imaging output a2(τ). We shall omit from here on the spatial
coordinate ζ, which is implicit in the dispersion parameters based on group-delay dispersion rather
than on group-velocity dispersion. The response for an arbitrary input envelope that propagates
from ζ = 0 is

a2(τ) = {[a0(τ) ∗ d1(ζ1, τ)]hL(τ)P (τ)} ∗ d2(ζ2, τ) (13.2)

where the same dispersive stages were followed as before (see Eq. 12.9)�dispersion (d1), time lens
(hL), and another dispersion (d2)�only that all transformations are represented in the time domain.
Additionally, right after the lens we added a pupil function P (τ), whose role is to apply the aperture
by constraining the temporal extent of the pulse. Plugging in the input envelope a0(0, τ) = δ(τ0),
it becomes an impulse response

h(τ ; τ0) = [d1(ζ1, τ − τ0)hL(τ)P (τ)] ∗ d2(ζ2, τ) (13.3)

The dispersive stages have the time domain transfer functions that are the Fourier transform of Eq.
12.3

d1(τ) = F−1 [D1(ζ1, ω)] =
1√
4πiu

exp

(
iτ 2

4u

)
(13.4)

and similarly for d2

d2(τ) = F−1 [D2(ζ2, ω)] =
1√
4πiv

exp

(
iτ 2

4v

)
(13.5)

Now the convolution integral Eq. 13.3 can be solved explicitly, by using also the time lens relations
of Eqs. 10.29 and 10.32

h(τ ; τ0) =

∫ ∞

−∞
d1(ζ1, T − τ0)h(T )P (T )d2(ζ2, τ − T )dT

=
1

4πi
√
uv

∫ ∞

−∞
exp

[
i(T − τ0)

2

4u

]
exp

(
iT 2

4s

)
P (T ) exp

[
i(τ − T )2

4v

]
dT

=
1

4πi
√
uv

exp

[
i

4

(
τ 20
u

+
τ 2

v

)]∫ ∞

−∞
P (T ) exp

[
i

4

(
1

u
+

1

v
+

1

s

)
T 2

]
exp

[
−iT

2

(τ0
u

+
τ

v

)]
dT

(13.6)

where the time is designated by τ0 at the object coordinate system, and by τ in the image coordinate
system.
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Term De�nition Acoustic analog
Aperture An opening that limits the amount of light that enters

the system. Every element in the imaging system may
function as an aperture

Aperture stop The smallest aperture in the system
Pupil The image of the aperture stop
Entrance pupil The image of the aperture on the object plane
Exit pupil The image of the aperture on the image plane
Pupil function The functional form of the aperture, which weights the

transfer function of the system (e.g., of the lens)
Apodization A mask or pupil that is designed with a particular

function, which includes graduated intensity �ltering
Windowing (in time)

Transmittance A transparent object that spatially modulates incident
light

Power (of a lens) A measure of the reciprocal of the focal length of a
system; measured in [diopters] or [D], equivalent to [m−1]

(Coherent) Point Spread
Function (PSF/cPSF)

The amplitude impulse response function of an object
point to its image. The term Line spread function is
sometimes used for the one-dimensional response of a
two-dimensional PSF (Goodman, 2017, p. 225)

Impulse response function
h(t)

Amplitude transfer
function (ATF)

The Fourier transform of the cPSF (a function of spatial
frequency)

Transfer function,
frequency response

(incoherent) Point Spread
Function (PSF/iPSF)

The intensity point spread function, which is the modulus
of the squared cPSF

Impulse response function
|h(t)|2

Optical transfer function
(OTF)

The Fourier transform of the iPSF in frequency
coordinates. It is also the normalized autocorrelation
function of the ATF.

Complex modulation
transfer function

Modulation transfer
function (MTF)
(incoherent)

The modulus of the complex OTF Modulation transfer
function

Phase transfer function
(PTF) (incoherent)

The phase of the complex OTF

Contrast sensitivity
function (CSF)

The combined modulation transfer function of the
periphery and the neural pathways in vision

Temporal modulation
transfer function (TMTF)

Radiometry Objective measurement of light (and other
electromagnetic) radiation

Radiant energy The energy that propagates onto, through, or from a
given surface area and time duration [J]

Radiant �ux (radiant
power)

Radiant energy per unit time [W] Acoustic source power

Irradiance Received radiant �ux per area, coming from all directions
[W/m2]. It is speci�ed for a given point on the surface

Sound intensity

Radiant intensity Direction-dependent radiant �ux density, measured per
unit of solid angle [W/st]

Radiance The direction- and position-dependent radiant �ux per
unit of planar area and unit solid angle [W/st m2]

Photometry Radiometry that is adapted to human vision, where the
energy is weighted by its relative visible sensitivity per
wavelength

Luminous �ux / power Photometric equivalent to radiant �ux [lm]
Illuminance Photometric equivalent to irradiance [lm/m2]
Luminous intensity Photometric equivalent to radian intensity [candela] =

[lm/st]
Luminance Photometric equivalent to radiance�close to subjective

brightness [candela/m2]
Loudness [phon]

Table 13.1: A jargon glossary for common functions used in optics with occasional analogs
in acoustics. The analogies are usually associative as the optical terms are used in the X-Y
plane, whereas in acoustics they are used for in time-frequency plane, which means that the
space-time analogy has to be invoked. The radiometry and photometry de�nitions are from
McCluney (1994). [J] is Joule, the energy unit. [st] is steradian, the unit of solid angles. [lm]
is lumen, the unit of luminous �ux.
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13.2.1 Imaging condition satis�ed

The quadratic phase in the �rst term of the integrand of Eq. 13.6 contains the familiar imaging
condition from Eq. 12.15, which can be eliminated if it is satis�ed, as is done in Kolner (1994a)
and in the analogous spatial case (Goodman, 2017, pp. 169�170). We will do the same as an
intermediate step, before solving for the more general case when it is not satis�ed.

The scaled Fourier exponential of Eq. 13.6 can be simpli�ed using the magni�cationM0 = −v/u

exp

[
−iT

2

(τ0
u

+
τ

v

)]
= exp

[
−iT
2v

(τ −M0τ0)

]
(13.7)

The �nal simpli�cation step concerns the initial quadratic phase term in Eq. 13.6, which contains
two terms that depend on the object and image time coordinates, but whose e�ects are altogether
undesirable as they may distort the image (Goodman, 2017, pp. 169�172) (see also �12.6). The term
belonging to the image coordinate exp(iτ 2/4v) becomes negligible in intensity imaging�when the
�nal image is detected as an intensity pattern rather than amplitude. Note that unless the imaging
condition is satis�ed, then M0 ̸= M = s/(v + s). The term belonging to the object coordinate
exp(iτ 20 /4u) will have a negligible e�ect if every interval in the object envelope δτ0 is mapped only
to a small region in the output δτ . In other words, the e�ect of an in�nitesimal unit of time from
the object a�ects only a limited duration in the image time. The latter condition is approximated by
replacing this instance of τ0 with τ/M , which can be thought of as an extension of the coordinate
transformation between t and τ to include the quadratic phase term that is not subjected to the
full imaging transformation. Placing it back in the quadratic term makes it dependent only on the
image coordinates

exp

[
i

4

(
τ 20
u

+
τ 2

v

)]
≈ exp

[
iτ 2

4

(
1

uM2
+

1

v

)]
= exp

(
iωcτ

2

2MfT

)
(13.8)

where the equation on the right is true only if the imaging condition is satis�ed, so that M = M0

and the term depends only on the image time coordinate.
Using the results of Eqs. 12.15, 13.7 and 13.8 in Eq. 13.6, we obtain the (time-variant) impulse

response

h(τ ; τ0) ≈
1

4πi
√
uv

exp

(
iωcτ

2

2MfT

)∫ ∞

−∞
P (T ) exp

[
−iT
2v

(τ −M0τ0)

]
dT (13.9)

Thus, up to the quadratic factor, the impulse response is a scaled and shifted Fourier transform of
the pupil function in ideal imaging conditions. Finally, two more variable changes will be applied
to Eq. 13.9: a change of integration variable T̃ = T/2v, and a change to the so-called reduced
coordinate of the object time τ̃0 =M0τ0

h(τ − τ̃0) =

√
M

2π
exp

(
iωcτ

2

2MfT

)∫ ∞

−∞
P (2vT̃ ) exp

[
−iT̃ (τ − τ̃0)

]
dT̃ (13.10)

This makes the Fourier integral dependent only on the time di�erence τ − τ̃0 in the traveling wave
coordinate system, and the impulse response is then time invariant in these coordinates. Convolving
the envelope object with this expression as in Eq. 13.1, we obtain

a2(τ) =

∫ ∞

−∞

h(τ − τ̃0)

M
a0

(
τ̃0
M

)
dτ̃0 (13.11)
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Rede�ning the impulse function according to

h̃(τ − τ̃0) =
1√
M
h(τ − τ̃0) (13.12)

We obtain this convolution integral

a2(τ) =

∫ ∞

−∞
h̃(τ − τ̃0)

1√
M
a0

(
τ̃0
M

)
dτ̃0 (13.13)

The envelope on the right-hand side is the familiar ideal one-dimensional image prediction according
to geometrical optics (Eq. 4.3)

ag(τ) =
1√
M
a0

( τ
M

)
(13.14)

which can be summarized by the convolution of the ideal image with the impulse response of the
pupil, which is in itself a scaled Fourier transform of the pupil function

a2(τ) = h̃(τ) ∗ ag(τ) (13.15)

This is completely analogous to the important result from spatial Fourier optics (cf. Goodman,
2017, pp. 172�174), which is based on Abbe's imaging theory (� 4.2.2). In spatial imaging, it
designates the e�ects of geometrical projection and of di�raction, which are completely determined
by the aperture and its own image as the exit pupil. This can be seen if the aperture is completely
open, P (τ) = 1, then its impulse response (or the point spread function, or PSF) is a delta
function and the image obtained is the ideal geometrical image. In the context of temporal imaging,
the analogous result enables us to refer to dispersion-limited imaging�imaging that does not
su�er from any aberrations except for dispersion.

13.2.2 Imaging condition not satis�ed

When the imaging condition is not satis�ed, it is convenient to de�ne a generalized pupil function
(Goodman, 2017, p. 205), which includes the quadratic phase term, whose e�ect is a defocus
aberration

P(τ) = P (τ) exp

[
i

4

(
1

u
+

1

v
+

1

s

)
τ 2
]

(13.16)

As the defocus term is going to repeat throughout this work, we set

Wd =
1

u
+

1

v
+

1

s
(13.17)

Using this generalized pupil and Eqs. 13.9 and 13.12, the impulse response integral is

h̃d(τ − τ̃0) =
1

2π
exp

(
iωcτ

2

2MfT

)∫ ∞

−∞
P (2vT̃ ) exp(iv2WdT̃

2) exp
[
−iT̃ (τ − τ̃0)

]
dT̃ (13.18)

where the subscript d was added to designate the defocused impulse response. In order to make the
integral analytically solvable and the subsequent solutions well-behaved, it is convenient to assume
a particular Gaussian-shaped pupil function (Kolner, 1997)

Pg(τ) = exp

[
−4 ln 2

(
τ 2

T 2
a

)]
(13.19)
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where the aperture full width at half maximum is Ta (see �B.3). This is essentially the impulse
response of a Gaussian low-pass �lter for the modulation band with a time constant Ta. The full
impulse response including the pupil can be solved and is therefore

h̃d(τ − τ̃0) =
1

2v

√√√√ 1

π
(

16 ln 2
T 2
a

− iWd

) exp

(
iωcτ

2

2MfT

)
exp

− (τ − τ̃0)
2

4v2
(

16 ln 2
T 2
a

− iWd

)


=
1

2v

√√√√ 1

π
(

16 ln 2
T 2
a

− iWd

) exp

(
iωcτ

2

2MfT

)
exp

− 16 ln 2
T 2
a

+ iWd(
16 ln 2
T 2
a

)2
+W 2

d

(τ − τ̃0)
2

4v2

 (13.20)

Where the �nal term is a product of a real Gaussian and a linear chirp. When the aperture duration
is too long it gives rise to geometrical blur, as the aperture's own image is superimposed on the
object image. This will cause temporal smearing of the image�loss of detail and contrast. When the
aperture is too short, then the response will be dominated by dispersion e�ects that distort the image
and also produce blur. Therefore, the choice of the aperture time is a tradeo� between geometrical
blur and dispersion, which can be determined by minimizing the real part of the denominator in the
complex Gaussian exponential in Eq. 13.20, similarly to Kolner (1997)

16 ln 2

T 2
a

= |Wd| (13.21)

Or

Ta = 4

√
ln 2

|Wd|
(13.22)

This expression was used along with the aperture time values that were computed in �12.5.1, The
frequency-dependent values appear as ∆topt in Table 12.2, as well as the ratios between Ta and
∆topt. The large ratios (∆topt ≈ 3) indicate that the auditory system is heavily skewed toward
geometrical blur and is therefore not dispersion-limited.

It will be informative throughout the text to consider a di�erent pupil function�the rectangular
window (a slit, spatially), which is not necessarily more realistic than the perfect Gaussian pupil.
While we have already seen that the Gaussian pupil may be a good model for the auditory aperture
(� 12.5.4), sometimes the rectangular window provides more intuition. However, given the results
of �11 (Figure 12.2), the constant Wd is negative in the entire audible spectrum, which makes it
impossible to obtain closed-form solution in all of the cases under study (see �D).

13.3 The Modulation transfer functions

To complete the analogy with Fourier optics, we shall derive the various modulation frequency-
domain transfer functions based on the impulse response functions we derived above. Namely, we
would like to derive the amplitude transfer function, the optical transfer function, and the modulation
transfer function (see Table 13.1). All three should be derived for both the focused and the defocused
cases and for both coherent and incoherent objects. Once available, these transfer functions will be
primarily employed for qualitative analysis, because they do not take into account the neural sampling
process that is taking place halfway through the signal propagation inside the auditory system. As
was shown several times before for spatial systems that employ sampling (e.g., charge-coupled device
cameras, CCD, that have grids of discrete detectors as pixels), the assumption of time-invariance
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(spatial invariance) is no longer correct for arbitrary signals with respect to an independent sampling
grid (Wittenstein et al., 1982; Park et al., 1984; de Luca and Cardone, 1991; Boreman, 2001, pp.
35�50). Some implications of this will be discussed in �14 and throughout the work, but for now
will be neglected in order to obtain tractable expressions. They will be qualitatively reiterated later,
once sampling is considered.

The amplitude transfer function (ATF) is de�ned as the Fourier transform of the point
spread function, h(τ), which can be thought of as the modulation-domain transfer function in
acoustics. This relationship is particularly straightforward to obtain, since the impulse response in
itself is already a scaled Fourier transform of the (generalized) pupil function (Eqs. 13.9 and 13.18;
see Goodman, 2017, pp. 194�195). Therefore, the ATF, H(ω), can be obtained from the double
Fourier transform

H(ω) =

∫ ∞

−∞
h̃(τ) exp (−iωτ) dτ =

1

4πv

∫ ∫ ∞

−∞
P (T ) exp

(
−iT τ

2v

)
exp (−iωτ) dTdτ

=
1

2π
P (−2vω) (13.23)

where the global quadratic phase term was neglected as is customary for intensity imaging (see
also �12.6). Additionally, as the pupil function is generally symmetrical, the negative sign may be
dropped, so P (−2vω) = P (2vω).

13.3.1 Gaussian pupil

In the Gaussian pupil case (Eq. 13.19), the ATF is

H(ω) = exp

[
−(16 ln 2)v2

T 2
a

ω2

]
(13.24)

where we dropped the 1/2π factor. Similarly, the ATF of the generalized Gaussian pupil is

Hd(ω) = H(ω) exp
(
iv2Wdω

2
)
= exp

[
−(16 ln 2)v2

T 2
a

ω2

]
exp

(
iv2Wdω

2
)

(13.25)

This function will be referred to as the defocused ATF and is marked by the subscript d.
The two ATFs are suitable for working with coherent objects�sounds that have a well-de�ned

phase function. It is now possible to obtain the corresponding optical transfer function (OTF),
which is de�ned as the normalized Fourier transform of the squared impulse response. It is the
appropriate transfer function when working with incoherent objects that have stochastic and func-
tionally unde�ned phase function. It can be computed from the normalized autocorrelation function
of the ATF, using the Wiener-Khintchin theorem (�8.2.3; Goodman, 2017, pp. 197�199; see also
Schroeder, 1981)

H(ω) =

∫∞
−∞H(ω′ − ω

2
)H∗(ω′ + ω

2
)dω′∫∞

−∞ |H(ω′)|2dω′ (13.26)

Obtaining the OTF of the Gaussian pupil will be done in stages123. The normalization in the
denominator of Eq. 13.26 is the same for both focused and defocused pupils

∫ ∞

−∞
|H(ω′)|2dω′ =

∫ ∞

−∞
|Hd(ω

′)|2dω′ =

∫ ∞

−∞
exp

− ω
′2

2
(

Ta

8
√
ln 2v

)2
 dω′ =

√
π

4
√
2 ln 2

Ta
v

(13.27)

123See the appendix in Jiang et al. (2013) for a derivation of a similar two-dimensional OTF.
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For the standard pupil, the pupil and hence and numerator of Eq. 13.26 are real∫ ∞

−∞
H(ω′ − ω

2
)H∗(ω′ +

ω

2
)dω′ = v2

∫ ∞

−∞
exp

{
−(16 ln 2)v2

T 2
a

[(
ω′ − ω

2

)2
+
(
ω′ +

ω

2

)2]}
dω′

= v2 exp

[
−(8 ln 2)v2

T 2
a

ω2

] ∫ ∞

−∞
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− ω
′2

2
(
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8
√
ln 2v

)2
 dω′ =

√
π

4
√
2 ln 2

Ta
v

exp

[
−(8 ln 2)v2

T 2
a

ω2

]
(13.28)

Putting the last three equations together we obtain the standard focused pupil OTF

H(ω) = exp

[
−(8 ln 2)v2

T 2
a

ω2

]
(13.29)

Moving on to the generalized defocused pupil, it is possible to recycle part of the standard OTF
solution of Eq. 13.28∫ ∞

−∞
Hd(ω

′ − ω

2
)H∗

d(ω
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ω

2
)dω′
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[
−(8 ln 2)v2

T 2
a

ω2
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−∞
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− ω
′2

2
(

Ta

8
√
ln 2v

)2
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{
iv2Wd
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2
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−
(
ω′ +

ω

2

)2]}
dω′

= exp

[
−(8 ln 2)v2

T 2
a

ω2

] ∫ ∞

−∞
exp

− ω
′2

2
(
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8
√
ln 2v

)2
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(
−2iv2ωWdω

′) dω′

=

√
π

4
√
2 ln 2
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v
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−(8 ln 2)v2
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a

ω2
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(
−v

2T 2
aW

2
d

32 ln 2
ω2

)
(13.30)

where Siegman's lemma (Eq. 10.31) was used again to solve the integral.
Therefore, due to the generalized pupil, the OTF contains an additional Gaussian term compared

to the standard OTF, which accounts for the defocusing phase term of the defocused ATF

Hd(ω) = H(ω) exp

(
−v

2T 2
aW

2
d

32 ln 2
ω2

)
= exp

[
−
(
8 ln 2

T 2
a

+
T 2
aW

2
d

32 ln 2

)
v2ω2

]
(13.31)

As the OTF is always positive due to the choice of pupil function, it is also identical to the modulation
transfer function (MTF), which is de�ned as the modulus of the OTF. However, this is not the case
in general and a phase transfer function (PTF) may have to be obtained as well.

13.3.2 Rectangular pupil

The Gaussian function is clearly a theoretical shape for the aperture, which is useful because of its
convenient mathematical properties, as well as the intuition it can provide for some problems. It is
going to be instructive to have the ATF and OTF of all varieties available for another theoretical
aperture form�the rectangular pupil function. Let us de�ne a rectangular pupil Pr of width Ta.

Pr(τ) = rect

(
τ

Ta

)
=


1 |τ | < Ta/2
1
2

|τ | = Ta/2
0 |τ | > Ta/2

(13.32)
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The ATF readily follows from Eq. 13.23 and the symmetry of the rect function

Hr(ω) = Pr(−2vω) = rect

(
2vω

Ta

)
(13.33)

the OTF can be obtained from the autocorrelation of the ATF (Eq. 13.26)∫ ∞

−∞
Hr(ω

′ − ω

2
)H∗

r (ω
′ +

ω

2
)dω′ =

∫ ∞

−∞
rect

[
2v
(
ω′ − ω

2

)
Ta

]
rect

[
2v
(
ω′ + ω

2

)
Ta

]
dω′ (13.34)

This can be solved separately for the negative and positive ranges of overlap of the two rect functions

Hr(ω) =

{ ∫ 0

−Ta
4v

−ω
2
dω′ = Ta

4v
+ ω

2
− Ta

2v
≤ ω ≤ 0∫ Ta

4v
−ω

2

0
dω′ = Ta

4v
− ω

2
0 < ω ≤ Ta

2v

(13.35)

This is the triangle function (Λ) at double the support of the coherent ATF, which is obtained after
normalization

Hr(ω) = Λ

(
2vω

Ta

)
|ω| ≤ Ta

2v
(13.36)

The triangle function is non-zero when the absolute value of its argument is smaller than 1, which
is by de�nition double than the rect function support. The generalized rectangular pupil is

Hdr(ω) = Hr(ω) exp(iWdv
2ω2) = rect

(
2vω

Ta

)
exp(iWdv

2ω2) (13.37)

Finally, calculating the defocused OTF requires a bit more work

Hdr(ω) =

∫ ∞

−∞
rect

[
2v
(
ω′ − ω

2

)
Ta

]
rect

[
2v
(
ω′ + ω

2

)
Ta

]
exp(−2iv2ωWdω

′)dω′ (13.38)

The integral contains the same complex exponential as in Eq. 13.30, but with the integral limits of
Eq. 13.35

Hdr(ω) =

{ ∫ 0

−Ta
4v

−ω
2
exp(−2iv2ωWdω

′)dω′ − Ta

2v
≤ ω ≤ 0∫ Ta

4v
−ω

2

0
exp(−2iv2ωWdω

′)dω′ 0 ≤ ω ≤ Ta

2v

(13.39)

Solving for both intervals yields

Hdr(ω) =

{
− 1

2iWdv2ω

{
1− exp

[
−2iWdv

2ω
(
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4v
− ω

2

)]}
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2ω
(
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4v
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2

)]
− 1
}

0 ≤ ω ≤ Ta

2v

(13.40)

Inside the parentheses in the arguments of the exponents of both parts of the integral, the same
interval is covered as a function of ω of [−Ta

4v
, Ta

4v
], so they can be both united using the absolute

value of ω in the argument and dividing their sum by 2

Hdr(ω) =
1
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2
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2v
(13.41)

The two exponentials can now be replaced with a sine function and then with a sinc function

Hdr(ω) =
1

2Wdv2ω
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2ω

(
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)]

(13.42)
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Thus, the e�ect of the defocus results in a sinc function term, a remnant of the rectangular window,
which multiplies the focused OTF, Hr(ω). After normalization we obtain the �nal OTF

Hdr(ω) = Λ

(
2vω

Ta

)
sinc

[
Wdv

2ω

(
Ta
2v

− |ω|
)]

(13.43)

Note that unlike the Gaussian pupil, the rectangular pupil is not non-negative, which means that its
MTF and OTF are not identical, as the PTF changes between -1 and 1 for every zero crossing of
the sinc function.

13.3.3 Power modulation spectra and bandwidths

We conclude with the general solution for the spectrum of a sinusoidal amplitude modulation com-
ponent using the ATF and the OTF (see Goodman, 2017, pp. 215�217). The ATF determines
the modulation spectrum of coherent signals, whereas the OTF determines the incoherent sound
modulation spectrum. Assume an amplitude modulation signal envelope

a(τ) = cos(ωmτ) I(τ) = cos2(ωmτ) (13.44)

where a(τ) and I(τ) represent the amplitude and intensity, respectively, that are modulated at
frequency ωm. Accordingly, the amplitude and intensity spectra S are given with

Sa(ω) =
1

2
[δ(ω − ωm) + δ(ω + ωm)] SI(ω) =

1

2
δ(ω)+

1

4
[δ(ω − 2ωm) + δ(ω + 2ωm)] (13.45)

Given H(ω), the intensity and intensity spectrum of the coherent image output can be computed
directly from the ATF by

Icoh(τ) = |h(τ) ∗ a(τ)|2 (13.46)

Scoh(ω) = [H(ω)A(ω)] ⋆ [H(ω)A(ω)] (13.47)

Where the ⋆ symbol designates the autocorrelation operation. Similarly, in the incoherent case

Iinc(τ) = |h(τ)|2 ∗ |a(τ)|2 = |h(τ)|2 ∗ I(τ) (13.48)

Sinc(ω) = [H(ω) ⋆ H(ω)] · [A(ω) ⋆ A(ω)] = H(ω) · [A(ω) ⋆ A(ω)] = H(ω)SI(ω) (13.49)

Speci�cally for the input modulation

Scoh(ω) =
1

2
|H(0)|2δ(ω) + 1

4
|H(2ωm)|2 [δ(ω − 2ωm) + δ(ω + 2ωm)] (13.50)

Sinc(ω) =
1

2
H(0)δ(ω) +

1

4
H(2ωm) [δ(ω − 2ωm) + δ(ω + 2ωm)] (13.51)

It is important to remember that the power spectrum of a modulation frequency component ωm is
associated with a transfer function of double the frequency H(2ωm)

124.
The spectral relations above enable us to directly compare the e�ect of the ATF for coherent

sounds versus the OTF for incoherent sounds. Both functions behave as low-pass �lters, whose

124In hearing, this envelope is represented by beating, where we do not hear any di�erence between the negative
and positive modulation half cycles, which amounts to an e�ective period doubling. In contrast, classical amplitude
modulation (with envelope of the form 1 +m cos(ωmt)) has a linear component as well that is directly associated
with H(ωm). The simple trigonometric identity underlying it may be also explained more intuitively using sampling
theory and is revisited in �E.
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cuto� frequencies can be readily calculated and compared as well. In the coherent case, half the
intensity level can be obtained from the square of the modulus of Eq. 13.24 for the Gaussian pupil

ωcoh =
Ta

4
√
2|v|

(13.52)

Similarly, the incoherent cuto� is obtained from 13.31

ωinc =
32(ln 2)ωcoh√

256(ln 2)2 +W 2
dT

4
a

(13.53)

Thus, when the system is in sharp focus, the second term in the denominator cancels out and we are
left with an incoherent cuto� frequency that is double as large as the coherent cuto��in line with
results from spatial optics (Goodman, 2017, p. 203). In general, though, because of the defocus, it
is the opposite, or ωinc ≤ ωcoh, so the comparison will turn out to be much subtler, exactly because
of the defocus term in the denominator. The analogous expression for the rectangular aperture that
has an identical Ta is obtained from Eq. 13.36

ωcoh,r =
Ta
4|v|

(13.54)

It can be seen that the modulation band support is larger in the rectangular aperture, which has a
larger time-bandwidth product than the Gaussian aperture.

The incoherent rectangular cuto� may be obtained numerically for speci�c parameter values
from 13.43.

The range between these two extreme conditions of coherent and incoherent sounds represents
the partially coherent domain. In linear systems, it can be represented as a combination of coherent
and incoherent e�ects (8.21). A direct treatment of partial coherence that is comparable to the one
above of these two extremes requires more advanced tools and is beyond the scope of this work (but
see, for example, Born et al., 2003, pp. 599�606). However, an intuitive understanding of partial
coherence as an intermediate coherence regime, which combines weighted coherent and incoherent
images, will be at the heart of explaining the range of operation of the auditory system as whole.

13.4 The modulation transfer function in hearing

We are now in a position to test the predictions of the OTF against the temporal modulation transfer
function (TMTF), using the dispersion parameters we obtained in �11 and the temporal aperture
from �12.5. TMTFs are commonly used to estimate the sensitivity to amplitude modulation in
human hearing (see � 6.4.1). The visual analog of the TMTF is the contrast sensitivity function
(CSF), which is de�ned as the combined MTF of the eye and the visual neural system, so whatever
part of the threshold that cannot be explained by peripheral optics is typically attributed to the neural
pathways (Van Nes and Bouman, 1967; Bour and Apkarian, 1996). They have been measured using
sinusoidally amplitude modulated broadband, narrowband, and tonal carriers. For broadband carriers,
the TMTF threshold generally has a low-pass �lter response, as the sensitivity drops with increasing
modulation frequency, and has a nominal range in broadband carrier of 4 kHz (Viemeister, 1979) or
2 kHz (Forrest and Green, 1987). Narrowband-noise and sinusoidal thresholds yield morphologically
di�erent responses for the same modulation depths, depending on the bandwidth of the carriers used
(Fleischer, 1983; Dau et al., 1997a; Kohlrausch et al., 2000). Intuitively, we would like to be able
to relate the theoretical coherent and incoherent modulation transfer functions from �13.3 to the
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tonal and broadband TMTFs, respectively. As it turns out, the comparison of the various transfer
functions is not straightforward and will be mostly qualitative in �rst approximation, apart from
extreme cases. However, this comparison will provide important insight about the temporal imaging
in the auditory system, and initiate a discussion about partial coherence and the e�ects of sampling.

13.4.1 Low-frequency modulation bandwidth correction

As was seen in the psychoacoustic curvature data analysis, aperture time based on a strictly dispersive
criterion (Eq. 12.40) yielded wrong predictions at low frequencies (below 500 Hz). The correction
to the temporal aperture durations that was o�ered is based on the following observations about
the auditory MTFs.

The coherent and incoherent modulation transfer functions for perfectly-sampled inputs125 were
given in Eqs. 13.25 and 13.31 for a Gaussian pupil function and in 13.33 and 13.43 for a rectangular
pupil function. For coherent signals, the amplitude transfer function (ATF) is in e�ect, which entails
linearity in amplitude. Its normalized autocorrelation forms the MTF126, which linearly weights the
intensity spectrum of the signal and is valid only for incoherent inputs. The functions are plotted
for several carrier frequencies in Figure 13.1. All transfer functions exhibit a low-pass behavior for
modulation frequencies, but the cuto� frequency is about �ve times lower for incoherent signals with
the Gaussian pupil, due to the inherent defocus aberration in the system. This di�erence is much
more pronounced with the rectangular pupil with about 20 times the di�erence between coherent
and incoherent in cuto� frequency for some of the carriers.

The modulation bandwidth generally increases with the carrier frequency, as is displayed in Figure
13.2. At low frequencies, the theoretical coherent MTF has a modulation bandwidth that is larger
than the carrier, which is physically meaningless. While these cuto� frequencies are undoubtedly
excessive, surprisingly high cuto� frequencies were measured for low tonal carriers in the cat's
auditory nerve �bers (Rhode and Greenberg, 1994, Figure 13), where exceptionally broad TMTFs
can be seen of carrier fc ≈ 350 Hz, and cuto� frequency fm ≈ 295 Hz = 0.84fc, as well as for
fc ≈ fm ≈ 500 Hz127. Additionally, recent in-vivo measurements of the intact guinea-pig apical
channels found that the (mechanical) cochlear response at frequencies lower than 2 kHz (equivalent
to 900 Hz in humans; see �13.4.1) is low-pass and not bandpass (Recio-Spinoso and Oghalai, 2017,
2018). Of course, this comparison is problematic not only because human, cat, and guinea pig all
have di�erent neural group-delay dispersion magnitude, but also because the value we obtained for
v applies to signals whose destination is the inferior colliculus and not the auditory nerve. However,
auditory nerve dispersion alone is most likely smaller than v (�11.7), which would entail even broader
TMTFs than with our estimation using the human v (Eq. 13.52).

Therefore, we arti�cially force the modulation bandwidth for low-frequency carriers (≤ 660 Hz
for a Gaussian aperture; ≤ 1350 Hz for rectangular) to be equal to 0.9 of the carrier, somewhat
arbitrarily pushing the limit of the �lter bandwidth (see footnote 118). Additionally, even with this
conservative correction made to the cuto� frequency, it appears that the e�ect of defocus diminishes
as the two transfer functions are brought closer together at very low carrier frequencies, depending

125The perfect-sampling condition allows us to interpret the continuous signal expressions at face value. This
condition will be relaxed later, as evidence will emerge that can be interpreted as suboptimal sampling that degrades
the various MTFs.

126As the Gaussian pupil function is real, its OTF is always positive, which makes it identical to the MTF. Therefore,
we will refer to it as MTF, to suggest similarity to the TMTF and simplify the terminology going forward. However,
in the case of the rectangular pupil, the OTF changes signs, so a distinction will be made between the OTF and
MTF.

127The modulation �lters were characterized by the cuto� frequency, which is where the synchronization coe�cient
drops to 0.1 and is therefore higher in frequency than the 3 dB cuto� (Rhode and Greenberg, 1994, Figure 1).
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Figure 13.1: Estimated amplitude and modulation transfer functions of the human auditory
system, with Gaussian and rectangular pupils and with ideal sampling, at 125, 500, 2000,
and 5000 Hz carriers. For coherent inputs (plotted on the left), the modulus square of the
ATF is computed, to obtain an intensity measure that is comparable to the incoherent MTF
(right). The rectangular-pupil response (dashed blue) is broader than the Gaussian-pupil (solid
black) for coherent inputs, but it is much narrower than the Gaussian for incoherent inputs.
Additionally, the sinc function (Eq. 13.43) makes the incoherent rectangular-pupil response
oscillate many times before it completely decays.

on the pupil function. Interestingly, because the coherent cuto� frequency should depend only on
v and Ta (Eq. 13.52), this correction generates an important constraint for these two parameters
that could not be justi�ed otherwise. By tweaking the temporal aperture Ta, the prediction of the
psychoacoustic curvature data at 125 and 250 Hz readily �ts the experimental data from Oxenham
and Dau (2001a). However, an additional correction to the defocus term is probably required as
well, in order to cancel out any chirping at the output image, although this was not pursued further
due to lack of su�cient information (see �13.4.1 for more details).

Using the corrected values for the low-frequency carrier aperture times, we can now revisit our
auditory MTF predictions (�gure 13.1). For example, using a 5 kHz carrier, the Gaussian pupil 3
dB cuto� frequency is about 340 Hz in the incoherent case, whereas it is 2360 Hz for the coherent
case. For the rectangular pupil, the cuto� frequencies are 3400 and 100 Hz, for the coherent and
incoherent cases, respectively. The incoherent rectangular MTF oscillates many times before dying
out completely. If the rectangular shape had some resemblance to the physiological window, then we
would expect to have non-monotonic incoherent TMTF due to oscillations. As will be seen below
using data from literature, this is certainly not the case, so we shall stick to the Gaussian pupil
function, in line with our earlier analysis (�12.5).
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Figure 13.2: The 3 dB cuto� frequencies of the ideal modulation transfer functions with
Gaussian and rectangular pupils. The coherent and incoherent Gaussian modulation band-
widths are plotted in thick blue and green lines, respectively. However, if left uncorrected, the
original cuto� frequencies would be broader than the carrier, which is physically impossible
(the limit fm = fc is in dash gray and the corresponding unphysical area is hatched above it).
Using a maximum bandwidth that is somewhat arbitrarily set to 0.9fc, the coherent correction
takes place below 660 Hz. For comparison, the responses of rectangular apertures are plotted
as well. The coherent rectangular bandwidth (dash-dot red) is

√
2 larger than the Gaussian,

based on Eqs. 13.52 and 13.54. For incoherent modulation, the rectangular bandwidth is 3.37
times narrower than the Gaussian bandwidth (purple dash-dot). The cuto� was computed
numerically for the rectangular pupil and according to Eq. 13.53 for the Gaussian. For com-
parison, the growth of half the auditory �lter bandwidth (equivalent rectangular bandwidth,
ERB) is plotted in gray crosses (Eq. 12.31), based on Glasberg and Moore (1990).
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13.4.2 Empirical TMTF data from literature

With the theoretical MTFs now available, we would like to compare their predictions to empirical
data. The dependent variable in behavioral data of the TMTF is the hearing threshold needed for
detection of the standard amplitude modulation (AM) signal,

a(t) = [1 +m cos(ωt)] sin(ωct) 0 ≤ m ≤ 1 (13.55)

as a function of the modulation frequency ω and carrier frequency ωc, when the carrier is tonal. The
modulation depth m, which is equivalent to contrast, is expressed in dB, where m = 1 is considered
100% modulation depth. In behavioral studies, the TMTF is tested as a detection threshold�
sensitivity to any modulation. Thus, it does not give information about whether the listener hears
the particular modulation frequency, or something else. We will return to this subtle point later. In
physiological studies of the brainstem and midbrain, the stimulus is usually in full modulation, and
the sensitivity is quanti�ed using the synchronization strength to the envelope, producing a TMTF
as a function of modulation frequency (Joris et al., 2004).

Several published TMTF curves of di�erent types are compiled in Figure 13.3 and will serve
as a reference in the subsequent analysis with several subsets of these curves presented later. As
the curves represent thresholds and not sensitivities, they are plotted upside-down compared to the
MTFs. The lowest threshold (most sensitive) is rarely lower than about -30 dB. The lowest value
should be compared to the 0 dB passband level of the theoretical MTFs, which do not account for
internal noise in the auditory system. Therefore, the most, or perhaps the only, relevant parameter
of the TMTF that can be compared with the MTF prediction is the cuto� frequency.

At �rst glance, the theoretical values we obtained for the cuto� frequencies for both pupil
functions (Figure 13.2) appear completely at odds with much of the human and animal behavioral
TMTF data of Figure 13.3, which show a much narrower modulation bandwidth. This is most
readily seen in data using the 5 kHz carrier, which has probably been the most tested frequency of
the human TMTF. The 3 dB cuto� frequency was estimated to be anywhere from 144 to 229 Hz
for 5 kHz tonal carriers (Stellmack et al., 2005). Additionally, narrowband data exhibit altogether
di�erent TMTF morphology, as it has higher threshold at low modulation frequencies�a departure
from pure tone TMTFs, which behave like a typical low-pass �lter. At high frequencies, the threshold
drops again, as the input is spectrally resolved and the modulation can be also detected by adjacent
auditory channels, producing a sensitivity that cannot be temporally achieved by a single channel.

All in all, there is a substantial discrepancy between the idealized predictions and the empirical
data. While not displayed, it is observed that it is impossible to straightforwardly tweak the imaging
parameters�mainly v and Ta�to retain consistent results of the temporal resolution and phase
curvature data of the previous sections, along with the empirical TMTF data. Therefore, any
discrepancy with the empirical data is not only due to misestimation of the dispersion parameters.
However, in order to account for this discrepancy, a more detailed analysis of the empirical data
is �rst provided for tonal (coherent) and broadband (incoherent) in the next two subsections. The
narrowband data will be used to usher in the discussion about partial coherence in the next section.
All together, these analyses will provide some of the necessary insight for the understanding of the
role of the auditory defocus.

13.4.3 Tonal TMTFs

Pure tones are the ultimate coherent carrier and as such should theoretically re�ect the low-pass
behavior of the coherent auditory ATF. When the pure tone is amplitude-modulated at high enough
a frequency, its sidebands are resolved by the adjacent �lters. Therefore, with low- and mid-
frequency carriers, the low-pass characteristics of the TMTF may not be easily observed, because
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Figure 13.3: Various temporal modulation transfer functions (TMTFs) from literature. Pure
tone and narrowband data have all been measured with a 5 kHz carrier, which is therefore
the most readily comparable frequency and the only one displayed for tonal and narrowband
carriers. The threshold is given in amplitude modulation depth dB (20 logm), where 0 dB
designates 100% modulation (m = 1) in Eq. 13.55. The data were usually collected using a
small number of subjects (N), which is noted in the corresponding legend, along with the type
of signal. The curves include two datasets from Kohlrausch et al. (2000, Figures 2 and 3),
which were measured with di�erent modulation frequencies and were separated to two groups
of three subjects; normal hearing and hearing-impaired tonal data from Moore and Glasberg
(2001, Figures 2 and 3); tonal and narrowband data (∆f = 30, 300 Hz) from Stellmack
et al. (2005, Figure 3, top right), which reproduced very closely the main observations (but
over an extended frequency range) of Dau et al. (1997a, Figures 4�5) with ∆f = 31, 314
Hz that are therefore not plotted here; tonal and narrowband data from Fleischer (1983,
Figure 1); narrowband data from Dau et al. (1997a) of ∆f = 3 Hz; broadband data from
Viemeister (1979, Figure 2). Finally, two animal broadband datasets are presented of the
European starling as measured directly from the auditory nerve (Gleich and Klump, 1995)
and behaviorally (Klump and Okanoya, 1991)�both curves were extracted from Figure 9A
in Gleich and Klump (1995). Note that at 1280 Hz, there was no measurable physiological
response in the starling even at m = 0, which is therefore plotted in dotted line and a circle
instead of a cross.
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Figure 13.4: A subset of tonal TMTFs at a carrier of 5 kHz. Refer to Figure 13.3 for details.
Note that no response could be measured at 640 Hz with the hearing-impaired subjects,
even at 100% modulation depth (Moore and Glasberg, 2001). The curves were truncated
before the sidebands are spectrally resolved by the adjacent �lters, in order to show only the
monotonically decreasing responses associated with a single channel.

the modulation is spectrally detected by other channels before the threshold drops, which results
in a �at response. At 5 kHz, the equivalent rectangular bandwidth (ERB; Eq. 12.31) is 565 Hz
(Glasberg and Moore, 1990), so usually some threshold increase can be observed before it drops
again when the sidebands are resolved, as can be seen in Figure 13.3.

The tonal TMTF curves from Figure 13.3 are replotted in Figure 13.4, where the responses are
truncated at ERB /2 ≈ 283 Hz, for clarity, just when the threshold is at its highest. All datasets
except for those from Moore and Glasberg (2001) show a sharp bend at around 150 Hz, and a cuto�
at slightly higher frequency. The normal hearing data from Moore and Glasberg (2001) is inconsistent
with these trends, showing a nearly �at response below the half-ERB frequency. However, additional
data of three hearing-impaired subjects�likely with broadened auditory �lters�revealed a distinct
low-pass �lter response with a similar cuto� (160 Hz), and no response at 640 Hz modulation. Two
subjects had similar responses at 2000 Hz as well, which are not displayed128.

Regardless of the speci�c cuto� frequency of the low-pass modulation �lter, it is almost an order
of magnitude lower than the ideally-sampled coherent ATF that was obtained earlier (about 2 kHz for
a 5 kHz carrier, Figure 13.1, bottom left). Therefore, comparison to within-channel auditory nerve
measurements may be more revealing than behavioral measurements. For instance, the bandwidth
of the cat's auditory nerve TMTF increases to a maximum of about 1500 Hz (Joris and Yin, 1992,
Figures 11 and 14). For carriers below 10 kHz, the modulation frequency scales with the carrier and
the cuto� frequency reaches a maximum of 1300 Hz. At high tonal carriers it levels o� and reaches
the absolute maximum at a carrier of 27 kHz. However, several instances of maximum modulation
cuto� frequencies that are even higher (1500�2500 Hz) were recorded in the auditory nerve of the
cat for carriers between 10 and 30 kHz (Rhode and Greenberg, 1994, Figure 13). Given the high
variability in the data and that it may be constrained by physiological limitations on the �ring rates
and nonexistent phase locking at these carrier frequencies, it is di�cult to directly compare these cat

128Few other studies are also inconsistent with the low-pass response and tend to show bandpass behavior at very
low frequencies (e.g., Yost and Sheft, 1997). These e�ects may be related to signal presentation methods and to
longer temporal integration e�ects that are beyond the scope of this analysis. See Kohlrausch et al. (2000) for further
discussion.
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data to our predictions. Nevertheless, our very high cuto� prediction (2000 Hz for carrier of 4000 Hz
and 3000 Hz for a carrier of 10000 Hz, Figure 13.2) may be more relevant to the speci�c channel,
which carries �pre-perceptual� information that is partially lost on the way downstream (Weisser,
2019).

13.4.4 Broadband TMTFs

Broadband carriers in the audible spectrum represent incoherent signaling and is thus suitable to
be tested vis-à-vis the ideal MTF, which predicts a lower cuto� frequency than the coherent ATF,
due to defocus. However, the fact that full-spectrum white noise simultaneously excites multiple
channels complicates the analysis. It can been dealt with either by �ltering out part of the signal, or
by combining several auditory-channel-wide stimuli that together produce the broadband stimulus
bandwidth. There is an important caveat to this, though�it is not obvious that an auditory-channel-
wide white noise signal may be considered a true incoherent carrier, in a sense that is equivalent
to complete incoherence in optics, which has vanishingly small coherence time (Eq. 8.31; see also
� 9.9.2). The frequencies associated with electromagnetic coherence theory are many orders of
magnitude larger than the audible range, so that the normal bandwidth of quasi-monochromatic
light can have a true randomized phase that covers its entire modulation bandwidth and accrues
over numerous periods over short physical distances (Tarnoczy, 1965, originally commented about
ultrasound frequencies, which are less a�ected by this problem than audio frequencies). This means
that true incoherent light need not interact with the carrier bandwidth or violate the narrowband
assumption. It does not appear to be exactly the case in narrowband sound. While seemingly a
technical point, it is nevertheless of great importance, as will be argued below.

Four broadband curves are plotted in Figure 13.5. The most well-known TMTF of sinusoidally
modulated white noise was measured by Viemeister (1979) and unlike the tonal TMTFs, it is mono-
tonically rising with a low-frequency cuto� of approximately 40 Hz (compared with about 150�200
Hz in the tonal case at 5 kHz). While a lower cuto� frequency is expected from the general relation
between the defocused coherent and incoherent transfer functions (Figure 13.1), it is not obvious
how the auditory �lter outputs are combined to yield this broadband threshold.

Some insight may be garnered from animals that were tested using comparable stimuli. Observa-
tions of the European starling are particularly revealing, because they were obtained both behaviorally
(Klump and Okanoya, 1991) and physiologically (Gleich and Klump, 1995). The behavioral starling
data follow the human data very closely for modulation frequencies above 80 Hz (green dash-dot
curve in Figure 13.5). In contrast, the response to the same stimulus measured in single units of the
auditory nerve has a very similar shape, but at a 7�10 dB reduced sensitivity (purple dash-dot curve).
Now, returning to human behavioral data, a narrowband carrier of 300 Hz bandwidth produced a
threshold that is identical to the starling's auditory nerve at (roughly) 80�320 Hz. Above 320 Hz,
the two thresholds diverge, as the human auditory system appears to resolve the narrowband noise,
or at least it has access to spectral cues from adjacent �lters that reduce the threshold. Hence, it
seems that pooling modulation information across �bers can reduce the TMTF threshold in both
humans and starlings. Note that additional behavioral data from other animals suggest that the
overall threshold (its most sensitive portion) can vary between species (Dent et al., 2002, Figure 4
and Klump and Okanoya, 1991, Figure 5).

Assuming that the single-unit starling response to broadband sound does indeed qualify as com-
pletely incoherent, it is possible to test it against the ideal-sampling MTF. As we do not have
the imaging parameters of the starling system, we can make use of the incoherent temporal acuity
expression of Eq. 15.1 that will be introduced in �15.6. Combining it with the expressions for
the incoherent cuto� frequency of Eq. 13.53 and the coherent Gaussian-pupil cuto� of 13.52, the
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Figure 13.5: Broadband TMTFs. Refer to Figure 13.3 for details.

following expression is obtained after some algebraic manipulation

finc =
4 ln 2√
2π

· 1
d
≈ 0.624

d
(13.56)

that ties together the temporal acuity d and the incoherent cuto� frequency finc of the MTF.
Interpolation of the starling neural TMTF curve in Figure 13.5, sets the 3 dB cuto� at 365 Hz (the
curves were averaged over 30 units with CFs between 200 and 3500 kHz, Gleich and Klump, 1995,
Figures 6 and 7a). Single-unit auditory nerve broadband gap detection measurements of the starling
identi�ed an absolute minimum of d = 1.6 ms (at CF = 1.3 kHz, Klump and Gleich, 1991, Figure
4a). Assuming that the minimum gap is achieved with ideal sampling allows us to estimate that
finc = 390 Hz�a fairly close result to finc ≈ 365 Hz (re 80 Hz) from the auditory nerve TMTF
measurement from Gleich and Klump (1995) (dash-dot purple in Figure 13.5). In contrast, the
behavioral broadband starling cuto� is only 150�180 Hz (Klump and Okanoya, 1991)�about half
of the physiological bandwidth. However, linking these physiological and behavioral TMTFs requires
consideration of the additional processing stages following the auditory nerve, as well as adequate
translation to human hearing.

Two studies directly compared the behavioral and the physiological tonal and broadband TMTFs
in the same animals and recording sites. In both studies, the TMTFs were obtained from the inferior
colliculus (IC), where the maximum cuto� frequencies observed are expected to be lower than those
found the brainstem. Multi-unit recordings of amplitude modulated noise and tonal carriers were
compared to behavioral responses of the awake budgerigar (an Australian parrot), whose hearing
and vocalization capabilities resemble those of humans (Henry et al., 2016), and in rabbits that
have higher thresholds than humans (Carney et al., 2014). In the budgerigar, lower noise-carrier
TMTF cuto�s were shown in IC neurons that exhibited higher peak synchrony and higher best
modulation frequencies for tonal carriers (Henry et al., 2016, Figure 5). Additionally, for the noise
carrier, both the across-channel pooled rate and neural synchrony thresholds were less sensitive to
high modulation frequencies (256�512 Hz) and showed no best modulation frequency neurons that
are tuned to 512 Hz�the only frequency band measured above 256 Hz (Henry et al., 2016, Figure
7). Very similar results were shown in the rabbit�only less sensitive overall (Carney et al., 2014).
In comparison with the budgerigar's data, the cuto� of the ideal Gaussian-pupil incoherent MTF of
Figure 13.2 increases slowly with carrier frequency, but also never goes beyond 400 Hz, and even
this bound is likely to be reduced by the time it reaches the IC, as was seen in the starling data
in � 13.4.4. Notably, in both animal studies, both rate and envelope synchrony information was
recorded separately and was associated with behavioral performance in the rabbit (spiking rate)



292 13.4. The modulation transfer function in hearing

and budgerigar and human (synchrony). This observation may suggest that di�erent animals may
employ di�erent detection methods to process the modulated sound. While this separation to two
coding regimes is commonly employed, they should be both understood as two complementary and
indispensable aspects of sampling. If sampling is precise, it must be synchronized to the envelope
at an appropriate rate. Otherwise, it necessarily generates sampling errors.

The incoherent-broadband prediction seems to be much more realistic than the coherent predic-
tions for the tonal data, in terms of the modulation bandwidth. Nevertheless, even for the incoherent
TMTF, the drop in rate between the physiological and behavioral animal data is substantial. Possible
causes for these di�erences are discussed in �14.8.

13.4.5 Narrowband TMTFs

Narrowband stimuli reveal a range of TMTF responses that are a hybrid of the tonal and the broad-
band responses, but are neither. Typically, in order to measure the narrowband TMTF, full-spectrum
white noise is bandpass-�ltered around the carrier and then sinusoidally amplitude-modulated129.
Because of the relative and absolute proximity of the modulation and the carrier frequency bands,
the stochastic carrier bleeds into the lowest frequencies in the modulation band, in proportion to
the bandwidth of the carrier130. This results in considerable modulation masking energy at low
modulation frequencies, which steers the TMTF away from its typical low-pass �lter behavior.

Consider the �ve TMTF curves that are replotted in Figure 13.6. Pure tone modulations elicit
the �attest and most sensitive responses. The tonal data by Stellmack et al. (2005) provide the
widest frequency range that includes the usual low-pass response before the sidebands are resolved
and the threshold drops again beyond the half-ERB frequency. The tonal data by Fleischer (1983)
are a bit more sensitive, but are identical in shape. This tonal TMTF was measured in the same
setup along with a 3 Hz narrowband carrier TMTF. The tonal and narrowband responses diverge
below 50 Hz, but then merge and become indistinguishable (very similar data are given in Dau
et al., 1997a, Figure 3, where the responses merge already at 15 Hz). As the narrowband bandwidth
broadens (measured for 30 and 300 Hz bandwidths), the responses diverge from the tonal TMTF
by becoming less sensitive over a wider modulation bandwidth. The 300 Hz bandwidth curve is
much �atter than the 3 and 30 Hz curves, presumably due to the triangular distribution of the
modulation spectrum that gets �atter with increased bandwidth (Dau et al., 1997a). As was noted
in the broadband TMTF analysis, in the limit of broadband stimuli (Viemeister, 1979), the response
shape is about the same as the 300 Hz narrowband, but the sensitivity improves by about 10 dB
and continuously decreases, instead of being resolved by adjacent �lters.

It is apparent that the responses generated by the narrowband stimuli are not well-described by
either coherent or incoherent MTFs. This type of signals requires the much more general framework
of partial coherence, which better taps realistic signals as well. It is discussed below.

129The order of the bandpass �ltering and modulation operations was not the same in di�erent studies, but was
shown to elicit very similar TMTFs (Dau et al., 1997a; Stellmack et al., 2005). It appears that the two orders produce
responses that are close enough both qualitatively and quantitatively, so whatever di�erence exists between the two
is ignored in the analysis.

130Dau et al. (1997a) highlighted that according to a proof by Lawson and Uhlenbeck, 1950, a rectangular carrier
envelope in the spectral domain results in a triangular envelope in the spectral modulation domain of the same
bandwidth. We saw in �13.3 that this is a general result of the autocorrelation of rectangular windows, only that the
resultant bandwidth is doubled. See Dau et al. (1999) for further investigations.
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Figure 13.6: Narrowband TMTFs. Refer to Figure 13.3 for details.

13.5 Modulation and partially coherent sound

The partial overlap between the narrowband and tonal TMTFs reveals a great deal about the auditory
system sensitivity to carrier types. A narrowband carrier�even if stochastic by design�cannot be
considered truly incoherent if it contains discernible modulation components that compete with
the target modulation. Moreover, as it becomes indistinguishable from a fully coherent carrier
at higher modulation frequencies, it may have e�ective qualities of a coherent carrier. If this is
correct, then narrowband carriers such as the 3 Hz and the 30 Hz bandwidths from Figure 13.6
should be able to interfere and beat together, even though they are not tonal. This should not
be surprising, as both coherence time and length�the measures of the degree of coherence over
time and space, respectively�are inversely proportional to the bandwidth of the carrier (� 8.2.4).
So, by de�nition, a pure tone has a degree of coherence of 1, white noise 0, and narrowband signal
somewhere in between. It was also shown how the �lter bandwidth in which sounds are analyzed can
increase the apparent coherence of otherwise incoherent signals, even if they never become exactly
the same (� 8.2.8). Either way, the compiled data of tonal, broadband, and narrowband TMTFs
strongly suggest that narrowband sounds may be best understood as partially coherent, rather than
completely incoherent.

To illustrate the partial coherence of narrowband sounds, the beating of two narrowband sounds
with di�erent bandwidths is visualized in Figure 13.7 using one-dimensional and monochromatic
interference patterns, or interferograms. Additionally, the e�ective amplitude modulation of three
narrowband sounds (carrier plus two sidebands) is shown in Figure 13.8. The interferograms are
particularly descriptive in illustrating the basic measure of interference that is fundamental in imaging
as well�visibility or contrast (i.e., modulation depth)�which is not as vividly represented in normal
time signal plots. Unlike optical interferograms, the x-axis represents time instead of a static spatial
dimension. The plot height contains no information and is used only for visualization. Audio demos
corresponding to the two �gures are found in /Section 13.5 - Modulation and partially
coherent sound/.

In Figure 13.7, the interference of two narrowband sounds of bandwidth ∆fc and frequency
spacing ∆f is shown. After demodulation, the beating between the components at frequency
fc ± ∆f/2 translates to ∆f in the intensity pattern, which was obtained after low-pass �ltering
the carrier and squaring. In the top row of the �gure, ∆fc = 0, which is the classical beating of
two pure tones for three di�erent frequency separations ∆f of 4, 10 and 40 Hz, over 1 s duration.
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Figure 13.7: The interference caused by beating of two tones (top row) or narrowband sounds
(bottom three rows). The patterns were generated by summing two time signals centered at
fc = 5 kHz of bandwidth ∆fc that are separated by ∆f , squaring them, and low-pass �ltering
the output using a fourth-order Butterworth �lter with 400 Hz cuto�. The top row is the
interference pattern of two pure tones, with no random components. The duration is always
300 ms. Narrowband carriers were generated by zeroing the out-of-band frequencies from the
Fourier transform of broadband Gaussian white noise signals, as in Dau et al. (1997a). The
output is mapped to 256-level intensity color map.

The interference patterns are fully periodic and exhibit high contrast between the peaks and the
troughs, showing as completely black background. In the next three rows, three narrowband carriers
with ∆fc of 2, 20 and 100 Hz are interfered for the same spacing. As the bandwidth of the carrier
increases, the image becomes gradually irregular, the periodicity is disrupted, and the contrast is
lost, so the interference pattern turns more uniform, on average.

The loss of contrast is more apparent in the second set of interferograms in Figure 13.8, which
illustrates AM interferences between a narrowband carrier and two narrowband sidebands. The loss of
contrast is most apparent in the second row. As three sounds with random phase interfere here, the
coherent-looking patterns are visible only for the carrier with 2 Hz bandwidth, where the modulation
frequency and carrier frequency appear superimposed. For larger bandwidths, the patterns no longer
show visible interference and the modulation rate sounds almost unrecognizable. Thus, the degree
of coherence for such an AM stimulus is smaller than the beating source. Note that if the sidebands
would have been produced directly using a sine function instead of narrowband sidebands, then the
interference would have been much stronger and closer to the results from literature.

In these examples, the e�ect of the auditory �lter itself was not taken into account, but the
corresponding perceptual e�ects can be heard in the supplementary sound demos. The interference
between narrowband noise maskers and narrowband noise or pure tone targets and the likely e�ect
of beating has been occasionally discussed in literature. See for example, Egan and Hake (1950)
and Moore et al. (1998).

13.6 Discussion and conclusion

In this chapter we derived the various impulse response functions for the human auditory system, as
well as its modulation domain transfer functions. These functions bring to light the signi�cance of
the defocus in the system, as it di�erentiates the coherent and incoherent signal regimes that enter
the system.



Adam Weisser 295

f
m

 = 4 Hz

 f
c 

 0
 H

z
 f

c =
 2

 H
z

 f
c =

 2
0 

H
z

 f
c =

 1
00

 H
z

f
m

 = 10 Hz f
m

 = 40 Hz

Figure 13.8: The interference caused by amplitude modulation of pure tones (top row) or
narrowband sounds (bottom three rows). The patterns were generated by summing three
time signals centered at fc = 5 kHz and fc ± fm at half the carrier level, with additional
details identical to Figure 13.7.

We compared the predictions from this theory in terms of MTF bandwidth to human data of
broadband, tonal, and narrowband TMTFs. That there are signi�cant di�erences between the func-
tions that could be predicted from theory, but the actual bandwidths were grossly overestimated
when compared to behavioral thresholds and only roughly corresponded to single-channel measure-
ments from the auditory nerve of animals. This discrepancy is puzzling given the robust prediction
we obtained in the time-domain analysis in �12.4 using the very same parameters. As will be shown
in the next chapter, this can be explained by incorporating sampling into the system, which is known
to degrade the spatial MTF of light in optics.

Despite the discrepancy in the TMTF and predicted MTF, the intuition that is garnered by the
idealized frequency-domain analysis will remain valuable in the chapters to come. Namely, coherent
signals have broader modulation bandwidth than incoherent signals, due to the inherent defocus of
the auditory system that di�erentiates the ATF and the MTF. For this conclusion to be meaningfully
used, the concept of partial coherence must be considered in the analysis of typical auditory stimuli.
It should be emphasized, though, that the sensed coherence is not necessarily equal to the stimulus
coherence. The sensed degree of coherence of the source is directly tied to the �lter bandwidth that
processes the signal and on the ensuing phase locking provided by the system. These factors will be
discussed in �16.4 in the context of auditory accommodation.

Using the modulation spectrum analysis, we obtained two further insights about the temporal
aperture of the system. First, its pupil function is indeed closer to a Gaussian than to a rectangular
window, in line with animal data from the chinchilla, and earlier results in �12.5. Second, at low
frequencies, the aperture stop is likely be the result of the cochlear �lters, perhaps combined with
other elements, rather than the neural spiking that dominates the high frequencies. This justi�es the
correction to the aperture time values that was required to account for the low-frequency cochlear
phase curvature prediction data in �12.5.


	The impulse response and its associated modulation transfer functions
	Introduction
	The impulse response of the imaging system
	Imaging condition satisfied
	Imaging condition not satisfied

	The Modulation transfer functions
	Gaussian pupil
	Rectangular pupil
	Power modulation spectra and bandwidths

	The modulation transfer function in hearing
	Low-frequency modulation bandwidth correction
	Empirical TMTF data from literature
	Tonal TMTFs
	Broadband TMTFs
	Narrowband TMTFs

	Modulation and partially coherent sound
	Discussion and conclusion


