Chapter 14

The use of sampling for imaging
continuous signals

14.1 Introduction

The visual image consists of relatively static frames that are perpetuated in time, which is then per-
ceived as a degenerate dimension of the object. Such images can be thought of as time-independent,
as they represent spatial patterns that appear to be frozen in time. Visible temporal changes in the
spatial image often require macroscopic movement to take place. It is mapped to an extra dimension
and requires sequential imaging that is continually refreshed. The same holds also in the case of
still and moving-image cameras. Both devices contain almost the same optics, but only the latter
has an explicit added dimension of time and, hence, movement.

In contrast to light that is produced by quantum processes on the atomic and molecular levels,
sound production requires continuous macroscopic movement (vibration), whose temporal depen-
dence is much closer to relevant biological time constants than light, by many orders of magnitude.
The way that the auditory system is designed to receive the signals confines them to being spa-
tially one-dimensional, which means that all temporal and spatial dependencies are mathematically
projected on a one-dimensional audible time signal. This means—to complete the analogy with
vision—that a static image of a pulse, or part thereof, must be taken as a stepping stone to a con-
tinuous image of moving objects. Unlike photography though, sound recording is only interesting
inasmuch as it can capture “moving” sound, and not just a single pulse. Therefore, the concept of
an “acoustic still shot” is of little use outside of theoretical research.

Acoustic signals are generally continuous, whereas the various expressions developed in the tem-
poral imaging theory relate to pulses. In fact, nowhere in the temporal imaging equations is it
made explicit that the envelopes must be shaped as pulses to satisfy the imaging operation. By the
physical nature of the system, it has a finite temporal aperture, which represents what the system
can “see” at any one time. Through modeling the psychoacoustic phase curvature data using the
continuous temporal imaging equations, it became abundantly clear in §12.4 that the system has a
finite aperture. A finite aperture was then included in the impulse response and modulation transfer
functions, as the defining feature of the pupil function (§13.2). Effectively, it is this aperture that
imposes a pulse shape on the incoming signal—it is not necessary for the signal itself to enter the
system in a pulse form.

In this chapter we will integrate some of the most elementary principles of sampling theory into
the auditory temporal imaging theory. Auditory sampling, which happens in the transduction of the
auditory nerve and in all subsequent synapses, is nonuniform and extends to a finite duration per
sample, unlike classical sampling techniques. The implications will be discussed, mainly with respect
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to the narrowing of the temporal modulation transfer function between the periphery and higher
auditory areas. An additional discussion about the implications of discrete processing and how it
compares with continuous temporal models of hearing is provided in §E.

14.2 Sampling in hearing theory

While sampling is an indispensable operation in modern signal processing that is based on discretized
representations of all analog signals, it is not an integral concept in hearing theory itself, although it
arguably deals with neurally discretized signal representations. In this brief section, the exceptions
to this trend in literature are mentioned—nearly all of which were modeled independently of one
another.

In psychoacoustics, two models exist that employ either “looks” (Viemeister and Wakefield, 1991)
or “strobes” (Patterson et al., 1992; adopted also in Lyon, 2018)—discrete samples in the auditory
signal processing. In some conditions, these models provide better predictions to experimental data
than continuous “leaky integration” or “sliding window" models. These models are not given precise
physiological correlates, or detailed technical parameters about the sampling. See §E for a further
discussion.

Sampling is somewhat more common in physiological models of hearing. Several auditory signal
processing models exist that were inspired by nonuniform or irregular sampling of wavelet frames,
whose exact physiological correlate is not made explicit (Yang et al., 1992; Benedetto and Teolis,
1993; Benedetto and Scott, 2001).

Most sampling models relate directly to the auditory nerve. Lewis and Henry (1995) and Yamada
and Lewis (1999) referred to the noise from the high spontaneous rate auditory nerve fibers as
performing dithering!3!—a term that is normally used only in the context of sampling and conversion
between digital and analog signal representations. A more specific mechanism of sampling was
considered by Heil and Irvine (1997) and Heil (2003), where the auditory nerve coding of the onset
of temporal envelopes was modeled as equivalent to point-by-point sampling of the envelope function,
which tracks it at high resolution, limited by the spike/sampling rate. Another neural processing
model makes use of the concept of stochastic undersampling to show how deafferentation of the
auditory nerve is analogous to noise (Lopez-Poveda and Eustaquio-Martin, 2013b; Lopez-Poveda,
2014). This model has some parallels to the classical volley principle, whereby the acoustic input is
adequately sampled (or even oversampled) by a population of neural fibers, each of which by itself
undersamples the signal (Wever and Bray, 1930b; §1.2).

Similar ideas were sometimes attributed to higher-level nuclei such as the brainstem. Warchol and
Dallos (1990) suggested that high spontaneous rates in the avian auditory cochlear nucleus enable
better sampling of the stimulus. Additionally, Yang et al. (1992) noted that the anteroventral
cochlear nucleus (AVCN) receives inputs from the auditory nerve, which could be instantaneously
mismatched and then lead to effective lateral inhibition. This perspective may be interpreted as
another form of nonuniformity in the sampling that exists beyond the stochastic auditory nerve
spiking pattern. Further downstream, Poeppel (2003) suggested that the two auditory cortices work
by asymmetrically sampling the incoming sound—the left hemisphere samples the auditory cortex
at around 40 Hz, and the right hemisphere at 4-10 Hz. This sampling strategy is thought to be
particularly advantageous for speech processing, where information on different time scales can be
extracted simultaneously.

Finally, sampling in the spectral domain of the spectral envelope was also considered in the

131Dithering is smoothing of sampling fluctuations, which are caused by the minimum quantization level (its finite
resolution), through the addition of random low-level noise.
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context of a model for vowel identification, which can be degraded when the harmonic content
is rich and the fundamental frequency is high, because of spectral undersampling and resultant
aliasing distortion (de Cheveigné and Kawahara, 1999). The model was also formulated in the
temporal domain using autocorrelation, which may have a physiological correlate. More generally,
the model was applied for pitch perception as well (de Cheveigné, 2005).

14.3 Basic aspects of ideal sampling

The temporal imaging theory is based on envelope objects that are shaped as finite pulses. However,
realistic signals are long and continuous, so the theory must be extended to include signals of arbitrary
durations. A natural solution is to internally construct the signal as a sequence of pulses. Each pulse
is an image in its own right, but can also be thought of as a sample. It is possible in general to
use the system linearity and time-invariance (only approximate features in our case) to impose the
pulse internally and relax the condition that the input is shaped as a pulse. This was demonstrated
naturally in our model of the psychoacoustic phase curvature responses, which assumed that the
continuous signal is shaped according to the aperture stop of the system. In theory, if the signal
is sampled frequently enough, an accurate reconstruction can be made that recovers the complete,
arbitrary signal, based on sampling theory. If this happens on multiple channels in parallel, then the
complete auditory image can be reconstructed from the individual channel images!'3?.

|deal sampling is represented as a periodic array of delta functions (also called a comb function):

s(t) = Z d(r — nTy) (14.1)

n=—oo

with period T} that is determined by the sampling rate 75 = 1/f;. The sampled version of an input
a(t) is then:

as(T) = Z a(nTy) (14.2)

Using Fourier series with period T, it is possible to obtain the spectrum of the sampler (see, for
example Pelgrom, 2010, pp. 133-136):

S(w) = % Z d(w — mws) (14.3)

m=—0o0

And the corresponding spectrum of the sampled signal is
Aw) =7 D Alw —mw,) (14.4)

Therefore, the spectrum of the sampled signal is periodic as well and repeats in multiples of f, =
ws/2m. As long as the sampled signal is bandlimited and satisfies the Nyquist criterion of B < 2f,
the periods of the spectrum stay clear of one another and perfect reconstruction of the signal is
possible, according to Shannon’s sampling theorem (§5.2.1). But if this bound is breached, then
the reconstruction will include spectral components that are not in the original input and give rise
to aliasing (see an example in Figure 14.1). Therefore, an anti-aliasing (low-pass) filter is commonly

132The existence of an actual reconstruction operation will remain, at this stage, completely hypothetical insofar
as it pertains to auditory perception.
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Figure 14.1: The apparent frequency response caused by downsampling a signal when it
contains frequencies higher than the Nyquist limit and no anti-aliasing filter is employed.
In the examples, sine tones generated at a sampling rate of fs = 4410 Hz were resampled
using delta impulse functions at rates of 1102 Hz (solid black) and 551 Hz (dash blue). All
frequencies above half the downsampling rates are aliased products caused by folded tones of
lower frequencies. This aliasing gives rise to distinct notches in the frequency response.

employed to ensure that the input to the sampler is bandlimited. The ideally reconstructed signal is
then given by

a(m) = 3 alny)sine (#) (14.5)

S
n=—oo

In practical engineering designs, a sinc filter is never used, but there are many approximations that
can achieve almost as good a reconstruction as this theoretical one (Unser, 2000).

14.4 Auditory sampling and imaging

In spatial imaging, the single samples are bits of intensity at a certain wavelength channel, corre-
sponding to color pixels. In vision, photoreceptor activation was shown to occur from single photons
(Bialek, 1987). Is the correct way to understand hearing equivalent to vision—point-by-point sam-
pling of the acoustic signal? We shall go over the canonical sampling types to try and shed some
light over this question.

14.4.1 Impulse sampling

Impulse sampling is achieved when the sampling windows are infinitesimally short, as each one
is well-approximated by a delta function (Couch II, 2013, pp. 93-95; see A and B in Figure 14.2).
Obviously, the sampling window always has a finite width, even if it is approximated mathematically
as a delta function. Insofar as the entrance pupil that was estimated in §12.5 reflects the sample
duration, an infinitesimally short impulse sampling is not supported by the data. In practice, however,
the effective pulse must have been represented by a population of neurons in the auditory channel
that fired more or less simultaneously. It is possible that each neuron in itself samples the image
that we considered as a pulse in the temporal imaging equations. The sampled and coded pulse
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Figure 14.2: Different sampling types. A: The original signal. B: Impulse sampling. C:
Natural sampling. D: Flat-top sampling.

then propagates downstream, where the impulsive nature of the initial sampling may or may not be
perceived. At present, this sampling model cannot be confirmed or rejected.

14.4.2 Natural sampling and images

A realistic sampler cannot have infinitesimally short samples, so the delta function should be replaced
with a window function, or in our case, with the image of the aperture as it appears on the input—
what we referred to earlier as the entrance pupil, P.(7). Each delta function in the grid of samples,
can be therefore replaced with the entrance pupil, which yields

s(1) = P.(7) * Z (1 —nTy) = /00 P.(7") Z ot —nTs —7")dr'
- Z /OO P.(™o(r —nT, — 7")dr" = Z P.(tr —nT;) (14.6)

And accordingly,
as(t) = a(r) Y Pu(r —nT,) (14.7)

n=—oo

This turns the continuous object into a periodic sequence of pulses in a shape that is constrained
by the duration of the entrance pupil (see §12.5). As is familiar from temporal windowing in signal
processing, the shape of the entrance pupil interacts with the output spectrum of the input as well.

When the sample has a finite duration, but it faithfully tracks the signal amplitude while it is on,
it is referred to as natural sampling (Couch II, 2013, pp. 133-137; see A and C in Figure 14.2).
Once again, the original signal can be reconstructed using the same principles as impulse sampling,
but the spectrum depends also on the duty cycle of the sampler—the relative signal duration that is
being sampled—in addition to the original spectrum. In our case, we successfully used a Gaussian
pupil function, which suggests that the sample is natural, in the sense that it is possibly weighted
in amplitude before it is being coded. However, as spikes do not convey amplitude directly (only
through their aggregate spiking rate), the concept of weighting may not be necessarily valid on the
individual-sample basis.

In two static spatial dimensions, natural sampling is really a complete image, where the sample
duration is analogous to the aperture stop. The interesting thing about it is that a natural sample
contains much information in itself, unlike the impulse sample that only encodes the amplitude of
the signal at one time point. In monaural human hearing, standalone signals that are less than, say,
2-3 ms, do not appear to convey any useful information, so they may not count as anything more
than a single data point. This is not the case in echolocating bats (Eptesicus fuscus), though, which
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were shown to be able to extract information from single reflected pulses that are about 0.4 ms long
(the maximum resolution of single pulses), possibly by comparing them to stored signal data. The
information contained in that pulse was shown to be discernible by bats with variations of tens of
nanoseconds or longer (!) (Simmons et al., 1990, 1996). While this information may be extracted
in different ways (Sanderson et al., 2003), it may attest to that, at least for some mammals, a
single pulse might not be just a single data point. In contrast, in humans, all major percepts (e.g.,
pitch and loudness) are integrated over tens of milliseconds, or longer. A single impulse has no
distinct pitch (Doughty and Garner, 1947). At 1 ms or less, only binaural cues are used to determine
localization through interaural-time difference, which does not require the detailed information of
the sample, but only its onset data or relative phase. Nevertheless, the curvature data extracted in
§12.4 was mathematically based on a single sample—a “snapshot” of the periodic chirping masker
as it repeatedly crossed the narrowband pure-tone target.

There is another way to look at natural sampling that is rather counterintuitive, if one is primarily
used to think of spectral resolution as the main limitation that underlies the auditory system’s
performance. When high frequency-sensitivity is a critical goal, then the uncertainty principle dictates
that the temporal window should be as long as possible to achieve high spectral precision and allow for
the output of the slow high-Q bandpass filter to build up. According to this perspective, the identity
of the tuned filter discloses the signal frequency, as its only measurable output is signal power at that
frequency. However, the temporal aperture itself—which is determined by the bandpass filter of the
channel only if it is also the aperture stop—can be also seen as a modulation-band low-pass filter,
whose cutoff frequency increases with the window duration (Eqs. 13.52 and 13.53). The auditory
temporal aperture used for sampling fulfills an opposite target in the case of impulse sampling, where
it has a zero modulation bandwidth that completely excludes any fluctuations, whereas an infinitely
long sample would contain all the variations of the object modulation band. Here, the longer the
natural sample is, the wider is its passband and more modulation information is preserved in the
image. Then, if the passband is too broad, the modulation information may be smoothed if it is
carried by too many frequencies that are all averaged together (cf., Oxenham and Kreft, 2014).
These reciprocal relations suggest that if natural sampling is relevant in hearing, there may be a
trade-off in setting the ideal temporal aperture, modulation bandwidth, spectral bandwidth, and
sampling rate of the channel—parameters that are not all independent of one another. See also the
discussion in §6.6.2 for a complementary view about the information conveyed by the spectral and
modulation spectra.

While the natural sample view is mathematically sound, it is challenging in terms of the underlying
neuronal mechanisms that are supposed to sample or communicate such information, as they may
have to carry more information than may appear to be borne by a single discharge. As was mentioned
in §14.4.1, it could be the result of firing by a few sampling neurons that together combine into a
higher-level sample that contain more information. However, given the example of the hyperacute
temporal perception of the bat, we should remain open to the conceptually challenging option that
a single spike contains more information than a digital sample does in engineered applications. This
point of view is currently not supported by neuroscientific theory.

14.4.3 Flat-top sampling

Flat-top sampling is a combination of impulse and natural sampling in that it samples the input
signal over a finite duration, in which one level of the signal is recorded (Couch II, 2013, pp. 137-
141; see A and D in Figure 14.2). In electronics, this is typically the onset or peak level, using a
sample-and-hold circuitry, which makes this popular technique simple to implement. The original
spectrum can be recovered as in impulse and natural sampling. However, individual samples do not
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contain extra information that can be interpreted as own images. Instead, the optical analogy would
be that of a pixel—a point of finite width and constant amplitude that comprises a single datum
of a larger image, when viewed from the distance. A pixel, however, is finite in spatial size and is
usually some kind of an average of the intensity pattern of light that is distributed on the area of
the detector. This model is more attractive in terms of the underlying neuroscience, as it carries
less information than in natural sampling. However, there is no evidence at present to support this
kind of sampling in hearing.

14.5 Auditory coding or sampling?

Because hearing is very much a time-based sense (see §1.3), the distinction between coding and
sampling matters a great deal. Both arise in the context of information theory (Shannon, 1948),
where uniform sampling was presented as a necessary step in the conversion between arbitrary con-
tinuous signals of finite bandwidth to discrete sequences that can be directly quantified in bits. Early
mentions of neural coding predated Shannon’s information theory and are found in the reports of the
pioneering experiments by Edgar Adrian in the late 1920s (Garson, 2015). With the introduction of
information theory, coding received a theoretical boost that was embraced in neuroscience. Shannon
introduced coding as an additional layer to communication in which raw information is transformed
to combat noise, minimize errors, and compress message length (§5.2.1). However, Shannon himself
warned against the indiscriminate employment of information theory outside of communication engi-
neering (Shannon, 1956). Indeed, even to this day, the usage of the coding concept in neuroscience,
despite its ubiquity, is controversial (e.g., Brette, 2019).

Perkel and Bullock (1968, p. 232) proposed a working definition of neural coding in their seminal
report: “ The representation and transformation of information in the nervous system.” This general
and somewhat vague definition was intentional, given a few competing meanings of the term “code”,
and the fact that the kinds of information that are carried by the neural system are too diverse
to be confined to just one narrow definition. Nevertheless, the observation that at the locations
of sensory transduction the physical signal is mathematically sampled seems either to be taken for
granted, or to be encapsulated in other features of the neural code (e.g., the “transformation” of
the “referent” of a physical signal—a measurable property such as intensity or brightness; Perkel and
Bullock, 1968, p. 233).

Samples of analog bandlimited signals are also expressed in bits—bits of digital data, though,
that constitute the required information for signal reconstruction. This implies that sampling is
a lower-level or “dumber” operation than coding (in the information theoretic sense), which does
not involve direct decision making in selecting which elements of the signal to process or suppress,
or how to deal with signal redundancies, to give just two examples. The sampler itself should be
"hard-coded” to deliver a certain fidelity in terms of quantization noise, dynamic range, etc. At
the level of the sample—a sequence of bits on a clocked grid—the additional level of coding, as in
Shannon'’s theory, either does not exist or is superfluous.

It may be argued that sampling and coding are intertwined, because a sequence of samples forms
a primitive code in its own right, as it is based on a rule-based transformation of physical signals.
However, there are several important differences between the coded and sampled sequences. The goal
of sampling is to represent a physical signal to the degree that it can be potentially reconstructed—
up to a certain bandwidth—at an arbitrary degree of precision. Sampling errors have the potential
to cause reconstruction errors, which are usually detectable as various forms of distortion and noise
at the output. In contrast, coding does not necessarily entail reconstruction. Coding errors can
manifest in different ways, depending on the application of the decoder, which has to process the
received message using a program (that is also referred to as a code, confusingly). For example,
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coding errors can cause a misidentification of a symbol, result in inefficient processing speed that
may cause a processing bottleneck, mislearn patterns and misestimate averages (e.g., pitch), or give
rise to false predictions or illusory percepts, which may even lead to misguided decision making.
These are all high-level effects on time scales larger than the individual sample. A sophisticated
coding scheme may be designed to be robust despite random errors (e.g., error correction through
redundancy), which is a primary strength of digital computation that is very difficult (maybe even
downright impossible) to attain with analog computation (Landauer, 1996).

In the case of the ear, the two neural operations—sampling and coding—may not be amenable
to a clear-cut distinction, due to the evident complexity of the hard-coded apparatus of the auditory
nerve. Also, this operation does not generate obvious symbols (§5.2.1). More fundamentally, both
sampling and coding share a common receiver as the message destination—the conscious listener.

14.6 "It from bit!*”

Three different lines of evidence are presented below that directly link (or strongly correlate) the
perception of distinct sound events and the firing of a single neural spike, or the lack thereof. This is
intended to bolster the low-level auditory sampling operation perspective, rather than the traditional
one of auditory coding.

The first line of evidence is based on a series of physiological and behavioral gap detection
experiments conducted on the European starling (Klump and Maier, 1989; Buchfellner et al., 1989;
Klump and Gleich, 1991). In these studies, a gap in continuous broadband noise could be observed
in the bird’s auditory nerve (Klump and Gleich, 1991), forebrain (Buchfellner et al., 1989), and
behavioral (Klump and Maier, 1989) thresholds. A gap in the stimuli was observable in the spike
train of single auditory nerve fibers. The authors referred to coding of the gap in two different
ways—a decrement in the spike response as seen in the peristimulus time histogram for gaps of 12.8
ms or less, or through the ensuing neural onset excitations for gaps of 25.6 ms and longer (Klump
and Gleich, 1991). The median minimum gap detected in this method was 1.6 ms, whereas it was
1.8 ms in the behavioral test (Klump and Maier, 1989). Interestingly, a subset of forebrain neurons
were sensitive to even smaller gaps—as small as 0.4 ms. Despite the (small) threshold differences,
these results strongly suggest that the information about a gap that is coded in the auditory nerve
propagates to the central brain and thus enables appropriate decision making. Given that the
neural firing is stochastic, then if the gap is registered in the auditory nerve—effectively sampled
with adequate resolution—then it can be further processed by the system downstream—encoded,
recoded, or simply, coded.

Another line of evidence comes from results that are presented in §E, which may be interpreted
in a similar way to that from the starling: information that is not yet encoded in more elaborate
patterns can elicit responses that are well explained using a sampling model. The main premise of this
series of experiments is that instantaneous undersampling may cause momentary aliasing, as listeners
can confuse the number of pulses in very fast sequences of one, two, or three pulses. Using this
aliasing model, it was possible to derive bounds for the instantaneous sampling frequency that could
underlie the responses. This interpretation enables direct comparison with typical spiking patterns
that are known from animal studies. For example, onset and steady-state responses are commonly
distinguished through their increased spiking rate that decays very quickly—neural adaptation
(Adrian and Zotterman, 1926; Galambos and Davis, 1943; Kiang et al., 1965). Westerman and
Smith (1984) obtained high-resolution spike data of Mongolian gerbils that exhibited very rapid
adaptation to tone burst within a few milliseconds, which has a time constant in the order of 2

133\Wheeler (1990).
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ms for inputs at 40 dB SPL, and somewhat longer for lower inputs. The corresponding rate during
this onset was 358-927 spikes per second, with a mean of 642 spikes per second. A further short-
term adaptation period was observed before the units dropped to the steady-state rate, which had
a corresponding range of 20-89 ms time constant (mean 57 ms), and rates of 35-261 spikes per
second (mean 122 spikes per second)'®*. These mean rates are comparable to the instantaneous
sampling frequencies that were estimated in Appendix §E, which indicates that they may represent
the short duration in which adaptation was minimal. Confusion threshold range was 313-660 Hz
using a non-adaptive test method (Experiment 1), and 191-352 Hz using an adaptive test method
(Experiment 2). When a rapid pulse was hidden within a longer slow pulse train that is likely long
enough to evoke a steady-state response, the effective sampling frequency range dropped to 41-77
Hz, which corresponds well to the slower time constant range after onset from the gerbil'3®. Finally,
while not statistically significant, the estimated mean sampling rate for 20 dB louder clicks was 132
Hz higher in §E, which is to be expected from higher discharge rates observed for stimuli of high
intensity (Galambos and Davis, 1943; Kiang et al., 1965). These figures suggest a circumstantial
link between the behavioral results and physiological measurements, which can be interpreted as
stemming from different sampling effects of the acoustic stimulus.

A related psychoacoustic measure that can be neatly fitted into the sampling model is roughness
perception, which is a sensation that is heard with amplitude- or frequency-modulated sounds at
frequencies of 15-300 Hz (Fastl and Zwicker, 2007, pp. 257-264). It is a distinct sensation in
comparison with the more general TMTF, which relies on discrimination thresholds that can be a
result of temporal resolution, spectral resolution, or even intensity cues at very slow rates. Roughness
taps to the temporal nature of the signal, which completely disappears only if the signal is fully
resolved (without any audible or residual input to the auditory filter that corresponds to the carrier).
However, if sampling is taken into account, then there must be a modulation frequency threshold
above which discrete fluctuations in level cannot be distinguished anymore, due to undersampling.
This is exactly the case, as can be seen in responses to high carrier and modulation frequencies.
For example, at 8 kHz, where the equivalent rectangular bandwidth (ERB) according to Eq. 12.31
(Glasberg and Moore, 1990) is 888 Hz, one would expect spectral resolution to fully take over at
modulation rates above 444 Hz, approximately, or even higher (see §12.5). Instead, as Figure 14.3
that reproduces Fastl and Zwicker (2007, Figure 11.2, p. 259) shows, roughness sensation almost
disappears at a modulation rate of about 250 Hz for an 8 kHz carrier!3®. Fastl and Zwicker (2007)
noted that the maximum roughness at low frequency bands is limited by the frequency selectivity,
whereas at high frequencies it is limited by the temporal resolution of the system. These results
may tap to the sensation of auditory flicker (Wever, 1949, pp. 408-416), whose visual counterpart
is the perception of flicker from a moving image. In cinema, 24 frames per second (each projected
twice, so effectively 48 frames per second) have been the golden rate for decades. With the advent
of computer monitors, refresh rates had to be raised to 70-120 Hz to eliminate the annoying flicker
perception they would otherwise have.

134Higher onset discharge rates were recorded in the auditory nerve of the chinchilla of about 2700 spikes per
second (!) (Ruggero, 1992, Figure 2.6).

135Note that in an attempt to model psychoacoustical forward masking patterns using either neural adaptation
or temporal integration models, the former was disfavored and produced somehow less good fit than the latter
(Oxenham, 2001). In that analysis Oxenham suggested that neural adaptation effects may be altogether ignored at
the level of the periphery. For a higher-level review of auditory adaptation, see Willmore and King (2023).

136 The 8 kHz frequency band can be made to work with the sharper filters reported in Oxenham and Shera (2003)
(see §11.6.3), which produce about half the bandwidth at this frequency (212 Hz), but predicts better spectral
resolution at 250 Hz and less roughness. Figure 14.3 shows no roughness at 250 Hz. However, this explanation
does not work for lower carrier frequencies, which have a smaller absolute bandwidth, but high maximum modulation
frequency for roughness sensation. For example, at 2 kHz carrier, the same calculation produces a limit of 75 Hz,
while the data show that some roughness exists at least up to 300 Hz.
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Figure 14.3: Psychoacoustic sensitivity to roughness at different carrier frequencies, as a
function of the amplitude modulation frequency of the tones. The modulation depth is 1 in
all cases. The figure was redrawn after Fastl and Zwicker (2007, Figure 11.2, p. 259).

A related and informal example of the effect of sampling on the TMTF can be seen in the
incoherent carrier data from Viemeister (1979), who measured thresholds of modulation frequencies
of up to 4000 Hz and showed that they are still audible at a -5 dB modulation depth (see Figure
13.5). However, listening to such fast modulation, it is clear that the modulation is no longer
perceived as temporal at this modulation frequency, but they rather give a timbral change to the
carrier, without being resolved. Thus, roughness does not apply here directly, but a similar effect
happens at very high frequency, in which the temporal fluctuations are no longer audible above a
certain frequency.

In summary, the empirical data presented can be used to draw a causal link between neural
spikes and perceptible events. The simple consideration that has been used in all cases is whether
the instantaneous sampling rate is fast enough to capture fast events in the temporal domain—a
short gap, a fast pulse train, or very high modulation rates. Wheeler's “it from bit" was coined to
emphasize a fundamental relation between measurable physical quantities and their informational
manifestation. We borrow this expression to also include perceptual events that are carried by neural
spikes.

These arguments do not preclude the existence or validity of coding of the auditory events that
were described. But in the above examples, coding does not provide a parsimonious description
of the measurements, because the type of errors reported (e.g., failure of detection, or drop in
sensitivity) are straightforward and do not seem to merit any high-level transformations. However,
hardwired aspects of coding that define the sampling patterns, such as the adaptation patterns to
stimulus onset, may be considered a low-level amalgamation of sampling and coding that may be
conceptually useful in all these cases.

14.7 Nonuniform undersampling

The imaging system has a finite temporal window, which must be “refreshed” in order to gener-
ate multiple images during a continuous signal, just as moving-image cameras employ shutters to
periodically generate discrete images. Electronic samplers employ clocks that trigger the precisely
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timed samples of the analog input. Neural spikes in themselves act as irregular triggers, due to the
underlying stochastic biophysical process. More centrally, the chopper cells in the cochlear nucleus
might also serve the purpose of ad-hoc clocks that oscillate regularly for a brief period (§2.4). Sam-
pling may also be the aggregate of all neural firing along the different auditory nuclei on the way
downstream.

If the sampling perspective is embraced, then neural spiking represents a nonuniform-rate sam-
pling pattern, which is conceptually different from the familiar fixed-rate sampling that was presented
in §14.3. It is not the intention here to review the theory of nonuniform sampling in any depth (for
example, see Marvasti, 2001), but a few key points will be highlighted, which may be intuitively
understood from the vantage point of the more familiar uniform sampling.

In nonuniform sampling we generally adhere to a temporal approach that dynamically compares
the instantaneous sampling rate to the Nyquist rate that is dictated by the signal spectral content.
If the instantaneous frequency of the signal is above the Nyquist rate, then the signal is going to be
instantaneously undersampled. The other extreme—instantaneous oversampling—is also interesting
to analyze using information load considerations, rather than signal processing per se.

As real-world acoustic sources are not necessarily bandlimited, it raises a concern for aliasing
that may be caused by undersampling. This is relevant here only in the context of the signal
modulation spectrum bandwidth in a given auditory channel, when the modulation is not resolved
in adjacent channels. High modulation frequency components that are contained in the passband
have to be sampled at an appropriate rate, to avoid aliasing, unless they can be removed with an
anti-aliasing filter. However, there is an interesting twist to this rule. As was first proven by Shapiro
and Silverman (1960), randomizing the timing of the samples can prevent aliasing from happening
in undersampling systems. Therefore, if the nonuniformity is truly random (jittering the sampling
around the period does not work), then aliasing may be traded off with noise. Shapiro and
Silverman (1960) also showed that if the samples are generated according to a Poisson distribution,
then the reconstructed signal will be essentially alias-free3’.

Another aspect of nonuniform sampling is related to the interplay between stationary (or periodic)
and nonstationary elements within continuous acoustic signals. Much of the information about the
sounding objects is contained in the transient part of the signal that arrives first, before the steady-
state part ensues (e.g., Kluender et al., 2003). Specifically, transient sounds can be rich in harmonics
both in the carrier and in the modulation domains—depending on how they are analyzed. Therefore,
it makes for an economical system design to invest more resources in sampling the transient sounds
more finely than the steady-state parts of the signal that are less informative and can be sampled
more slowly. This is an intuitive justification for neural adaptation in hearing, which potentially
budgets the available spikes where they are most needed.

These two nonuniform sampling aspects—random sampling and denser sampling of information-
rich regions of the signal—were shown to work in concert in the rhesus monkey’s retina, which
can be modeled as a two-dimensional spatial sampling grid (Yellott, 1983). Photoreceptor (cones)
arrays on the retina are distributed in decreasing density from the highst density in the fovea, then

137 A modern signal-processing approach to undersampling that is called compressed sensing is based on different
mathematical principles than those of Shapiro and Silverman (1960). Compressed sensing has been successfully
employed in signal processing applications to beat the aliasing limit imposed by the Nyquist rate (Candes et al., 2004).
It makes use of a known but general functional basis (e.g., wavelets) that is taken as background information, which
reduces the need for many samples to be generated with regular clocking. Neural correlates of this techniques have
been theorized (Ganguli and Sompolinsky, 2012), but none were studied in the auditory system to date, although
the earlier model by Benedetto and Teolis (1993) and Benedetto and Scott (2001) is also based on nonuniform
sampling with a wavelet basis and might be conceptually related. Compressed sensing has found much use in image
compression (Patel and Chellappa, 2013), for example, but will not be dealt with here, as it is not clear that it reflects
the physiological auditory signal processing.
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the parafovea, the periphery, and far periphery, where the cones are sparse. One may expect that
the visual image would be plagued by aliasing, if high spatial frequencies that are well-sampled by
the fovea at above the Nyquist rate, are imaged by the low-density sampling periphery. However,
this does not happen because the retinal sampling grid is quasi-random (not exactly Poisson-like,
because of distance constraints between cones), and higher frequencies than the Nyquist rate are
converted to noise in the periphery. An insightful primer about the relationship between nonuniform
sampling and aliasing and how it plays out in vision was given by Resnikoff (1989, pp. 245-263).

The adaptive nature of auditory processing—its nonuniform sampling—suggests that aliasing, if
observable, evokes only a fleeting sensation, as it is either replaced with internal noise, or resolved
to adjacent frequency bands. In the auditory system, aliasing was conjectured to take place only
during very short sequences that were tested in §E. Physiological evidence is more scant and has not
invoked the terms aliasing or undersampling (with the exception of the spectral sampling model of
de Cheveigné and Kawahara, 1999). A clear evidence for aliasing in auditory-nerve fiber synchronized
patterns is found in Sinex and Geisler (1981, Figures 9 and 10), where instantaneous frequency was
estimated by the interstimulus intervals of the spiking pattern. The fiber tracked the frequency well,
but when the frequency was larger than could be sampled by the fiber, the instantaneously tracked
frequencies were subharmonics of the actual instantaneous frequency—f/2, f/3,... f/6. In other
examples, occasional neural recordings of temporal modulation transfer functions seem to suggest
that aliasing can be invoked artificially. See for example, Figures 2D, 5D and 5F in Kale and Heinz
(2012), which show inexplicable above-cutoff-frequency responses that look like aliasing. Typically,
these tuned units are taken to exhibit a band-stop (or band-reject) characteristic response (Krishna
and Semple, 2000; Nelson and Carney, 2007; Carney et al., 2014), which is nevertheless difficult
to distinguish from an aliased response as is seen in Figure 14.1. This ambiguity is perhaps most
conspicuous in Krishna and Semple (2000), where inferior colliculus (1C) units were (over-)modulated
at frequencies close to the characteristic frequency and were considered to exhibit suppressive regions
caused by inhibition in the reject band, but with no clear role in sound processing (e.g., Figures 2,
4, 6, and 16).

Nonuniform sampling is presented here as an underlying reality of neural spiking, which is in large
part due to its stochastic nature. However, this is not an entirely accurate representation, since the
system is able to phase-lock to the carrier and synchronize to the envelope. We modeled phase
locking earlier as a result of a dedicated phase-locked loop (PLL) module in the cochlea (§9). One
of the most important usages of PLLs in communication circuits is synchronization of the internal
signal to the external one, which was produced remotely using a local oscillator, which works as
a clock. The PLL therefore obviates the need for a local clock at the receiver, as long as ad-hoc
samples can be generated that are synchronized to the signal'3®. If the PLL is out of lock, then the
randomness of its samples is expected to increase.

14.8 The effect of sampling on the modulation transfer
function

Having clarified some of the main features of the sampling auditory system, we would like to account
for the discrepancy in the bandwidth of the predicted and the empirical TMTFs we analyzed in §13.4.
From the analysis of the various auditory TMTFs, it appears that the cutoff frequency predictions
made using the ideal ATF (Figure 13.2) grossly overestimate the behavioral coherent response
values compared to findings from literature (Figure 13.4). The same is true for the incoherent

138Clocks have appeared rather rarely in auditory models, although usually only with short-term regularity and
without a clear physiological correlate (e.g., Whitfield, 1970; Suga and Schlegel, 1973; Yang et al., 2018).
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TMTF, although the general property of a smaller incoherent than coherent TMTF bandwidth was
predicted correctly. How can this discrepancy be explained, given that the very same parameters
have been used fairly successfully to predict the behavioral curvature and temporal aperture data in
§12.47

One possible explanation for the MTF and TMTF discrepancy may be related to the fact that
some auditory brainstem units are better described by bandpass rather than by low-pass modulation
response. For example, in the guinea-pig's ventral cochlear nucleus (VCN), several tuned unit types
(primary, sustained choppers, and onset chopper cells) have characteristic responses to sinusoidal
amplitude modulation that are less low-pass and more bandpass in their response, as they display a
clear peak at their best modulation frequency (e.g., Sayles et al., 2013). At full modulation depth
most units appear low-pass, but become bandpass with lower modulation depth values—mainly
the chopper units that are most sensitive to AM. However, the high-frequency response of these
bandpass units overlaps that of the low-pass units, so even if the characteristic filtering of these
cells is relatively dominant in the VCN overall response (and eventual perception), it still does not
explain the complete lack of sensitivity to high frequencies in behavioral tests. Rather, it appears
to be shaping the low-frequency irregularities that are sometimes observed in empirical data (Figure
13.3), which were also discussed in the context of narrowband responses (§13.4.5).

An alternative explanation for the discrepancy in the MTF prediction is due to sampling limi-
tations. There are at least three known causes for MTF degradations and bandwidth reduction in
optics that are caused by finite spatial sampling of the image (Wittenstein et al., 1982; Park et al.,
1984; de Luca and Cardone, 1991; Boreman, 2001, pp. 35-50). First, the assumption of time-
invariance!'®® is generally not true for a sampler that has a finite sampling frequency f,. This means
that small delays of the object—of the order of one sampling period—can heighten the sensitivity to
slightly different features that are captured by its finite-sized samples. This is compounded by the
second cause, which is that real-world objects are generally not bandlimited, so that arbitrary inputs
that contain modulation frequencies that are higher than its instantaneous Nyquist rate f,, > fs/2
can be aliased. The third cause is the finite footprint of the optical detector, which in our case
is equivalent to sampling that is not impulse-like (§14.4). In optical detectors, the basic unit of
detection is at minimum one pixel, which assumes a constant intensity that effectively produces
flat-top sampling (§14.4.3). While we do not expect it to be exactly the case in hearing, we know
that the finite size and response of each sample has an effect on the image. In spatial optics, the
compounded effect of sampling on MTF is captured by the sampling MTF following the detector,
which is located at a distance behind the lens. In the hearing system, the first sampling location
is right after the lens, before the neural group-delay dispersion. We will nevertheless consider the
effect to be qualitatively the same as in spatial imaging.

The main difference between the psychoacoustic phase curvature (§12.4) and the MTF pre-
dictions is that the former was based on the time-domain imaging transform and the latter on
frequency-domain transfer functions. The time-domain model we developed for the phase curva-
ture data relied on a single image of the stimulus—a snapshot of a pulse—which contains all the
information necessary for solving that problem. Using frequency-domain methods for long stimuli,
though, we are required to integrate over many pulses that are sampled across fibers over a long
time. For this to work, sampling has to be perfect, so that the sampling MTF can be exactly equal to
the MTF, over several synapses—each of which resamples the previously sampled MTF. As perfect
sampling is unlikely to take place, we can expect the signal to be gradually undersampled by the
time it reaches the auditory retina at the IC.

The role of undersampling in the received TMTF is supported by animal data—as long as it is
reinterpreted according to a sampling framework. On the whole, TMTFs that are measured along the

139Ghift-invariance in spatial imaging.
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auditory pathways, between the auditory nerve and the midrain and auditory cortex, gradually become
less sensitive to high modulation frequencies and rate coding becomes more prevalent beyond the
IC (for a comprehensive summary, see Joris et al., 2004, Figure 9). For example, despite broadened
cochlear filters due to noise-induced hearing loss, broadening had no effect on the modulation
bandwidth in the auditory nerve of chinchillas. It was suggested that the TMTF is constrained by
non-cochlear factors, such as neural adaptation and refractoriness (Kale and Heinz, 2010, 2012; Kale
et al., 2014; See §17.3.4 for further discussion). Incidentally, it fits our earlier conclusion that the
aperture stop of the system is determined by the neural transduction and not by the cochlear filters.

In another recent study, data from the Mongolian gerbil, which were based on realistic stimuli
from its natural environment, showed that some parts of the stimulus are postsynaptically inhibited
between the auditory nerve and the spherical bushy cells in the anteroventral cochlear nucleus
(AVCN) (Keine et al., 2017). Sampling considerations can suggest that many samples are lost
between the auditory nerve and the AVCN, which effectively results in a substantial drop in the
transmitted information and, hence, in a drop in the effective sampling rate. Notably, though,
the recorded rate in these cells was comparable to their spontaneous activity rate. Additionally,
the reduction in the instantaneous firing rate resulted in a complementary increase in the temporal
precision of the samples. Similar results were reported by Dehmel et al. (2010) and Kuenzel et al.
(2011).

The decrease in sampling rates in the gerbil is reminiscent of the starling data we reviewed
earlier by Klump and Gleich (1991) and Gleich and Klump (1995), who found that the behavioral
modulation bandwidth was about half of the physiological one (§13.4.4). Our prediction was only
7% higher than the physiological value that was recorded from the auditory nerve of the starling.
We can try to supplement these findings by estimating how critical the effect of undersampling is,
by comparing the predictions we obtained for the perfectly sampled MTF in humans to the fastest
known synchronized modulation rates that were reported in physiological studies. As was reviewed
in §13.4.3, the highest modulation frequencies that were measured in the auditory nerve of any
species are from the cat and are in the range of 1500-2500 Hz for carriers of 10-30 kHz (Rhode
and Greenberg, 1994, Figure 13). Therefore, our predictions still overestimate the frequency cutoff
of the MTFs, as it we see up to 3000 Hz modulation cutoff at 10 kHz (Figure 13.2)%49.

Our predictions of human compared to both cat and starling maximum cutoff measurements
suggest that in any case they are overestimated. Accounting for undersampling definitely appears
to contribute to the discrepancy, especially if it begins early on—as soon as the mechanical signal is
transduced. But these results are also confounded by the uncertainty we have about the dispersion
parameters, especially at high-frequency carriers, which likely skew the results. Furthermore, the
simple modeling offered by the MTF does not take into account the evident physiological limitation
for synchronizing to high modulation frequencies, perhaps due to refractoriness.

A final mechanism for degradation of the coherent TMTF should be mentioned, which is not
independent from the undersampling mechanism. Both undersampling and nonuniformity effectively
contribute to the decoherence of the coherently detected signal. This is encountered in the auditory
nerve, but we also mentioned examples for AVCN units that retain their low modulation frequency
precision in spite of undersampling, although these observations did not apply for all cells (Dehmel
et al., 2010; Kuenzel et al., 2011; Keine et al., 2017). This may mean that other subpopulations of
cells in AVCN and perhaps in other nuclei may not conserve the coherence of the incoming signal,
which depends on the phase-locking precision, on top of the MTF bandwidth. It is therefore possible
that as the signal becomes partially coherent, its MTF becomes closer to that of the incoherent
MTF, which has a more limited bandwidth.

140Unfortunately, the dispersion parameters above 10 kHz are extrapolated and are very unstable and therefore
could not be reliably used to estimate higher MTF cutoff frequencies.
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14.9 Discussion

The role of sampling in auditory processing was analyzed with special attention given to the type
of sampling window, the effect of nonuniform sampling, and potential aliasing. It was then used
to account for the bandwidth narrowing in the measured TMTF compared to the predicted MTF,
which was based on perfectly sampled frequency-domain transforms. We identified the auditory
nerve as the primary site of sampling, but noted that repeated resamping throughout the brain is a
likely source of further degradation in the perceived MTF.

The sample, which is the sound image of a pulse, may represent the minimal unit of auditory
perception that can be experimentally observed both physiologically and psychoacoustically. We
produced some evidence to attest to that the image might contain more information than an optical
pixel, which is defined by its fixed place and intensity reading. Further work will have to be done to
find out what the most appropriate relationship is between the image and the sample, or how much
information is contained in a single spike. Also, given that information is pooled over populations of
fibers in every channel and usually over several channels, then the perceptual significance of a single
image-sample as the atom of hearing (similar to Gabor's logon, Gabor, 1946) has to be clarified.

Neural sampling of continuous signals poses a few conceptual challenges that have been either
neglected or treated only in passing in various hearing models. We would like to flag some of these
challenges in advance, as they can guide the discussion that follows. These challenges are not going
to be necessarily resolved in this work, though, as our main goal is to see how sampling implicate
temporal imaging.

Embracing the notion of neural sampling comes close to suggesting that the auditory brain
operates discretely and not continuously. This is a highly contentious topic in neuroscience that has
been avoided in auditory research almost completely (but see VanRullen et al., 2014). Although
the experience of our auditory perception (and other modalities too) feels continuous and not
discrete, there are more than a handful of results that indicate that it is a finely sampled sequence
of discrete images, which only appear continuous. If the IC is assigned the role of the auditory
retina (§11.7), then beyond it the discrete/continuous representation problem is reduced to that of
visual processing downstream from the retina, as long as thalamic and cortical processing is directly
comparable between the two modalities (see §1.5.2). Additional discussion is found in §E.3.

A major requirement in sampling, which was implicit throughout the chapter, is that it should
lead to reconstruction of the signal at the output. However, we have no access to the notion of
signal reconstruction in perception, so we cannot estimate what the relevance of this mathematical
concept is to the brain. Nevertheless, it has been insightful to discuss sampling as a goal-oriented
process, which can be evaluated by comparing it to an ideal process from which the signal can be
faithfully recovered.

We discussed the implications of nonuniform sampling with emphasis on undersampled inputs
that cause aliasing, but we did not touch the concept of oversampling. In theory, oversampling
provides a fail-proof solution to distortion from aliasing, so it may appear like a good strategy.
However, it is also wasteful in that it produces larger quantities of data than may be needed and
can load the system informationally, cognitively, and also in terms of the incurred energy costs.
Therefore, it can be argued that unnecessary information is readily discarded in hearing, using only
a minimal number of samples that are needed to just represent the stimulus correctly and maintain
a sense of continuity (Weisser, 2019). See also §E.2.3.
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