Chapter 6

Physical signals

“In time, | came to the conclusion that the dehydrated cats and the application of Fourier analysis
to hearing problems became more and more a handicap for research in hearing.” (Békésy, 1974).

6.1 Introduction

Sound propagation is most generally represented as a wave that is distributed in space and time.
But in all common audio applications, it is customary to work with signals rather than waves, which
are expressed using a single dimension of time. The spatial dependence is then factored into a
frequency-dependent phase and amplitude terms that are fixed as long as the source and receiver
are stationary. Mathematically, it simplifies all calculations a great deal. Using the term “signal”,
although sometimes synonymous with wave, also confers some intentionality that may be lacking in
the normal acoustic wave and implies that it carries information. Typically, signals within the auditory
system too are strictly explained in the time domain, which matches the perception of hearing as
a temporal sense (§1.3). Nevertheless, we would like to keep sight of the auditory signal and be
cognizant that its source is a physical acoustic wave, which may not always be as mathematically
idealized as the temporal signal representation implies.

The analytic signal is a powerful signal analytic tool that goes a long way to simplify the treatment
of physical signals. It was introduced by Dennis Gabor®®, when he tried to identify the minimal unit
of sound in hearing—the logon—using the uncertainty principle dictated by the Fourier transform
(Gabor, 1946). This technique has been widely employed in different fields including hearing research,
primarily to decompose signals to their real envelope and temporal fine structure. Unlike the bulk of
hearing research, we shall make use of another variation of the analytic signal with a fixed carrier and
a complex envelope, which includes all sources of modulation. The complex envelope is commonly
used in optics and coherent communication theories, which also provide the theoretical foundation for
the present work—in coherence, phase-locked loop, and temporal imaging theories. In these theories,
the complex envelope is particularly handy, because it exactly coincides with mathematical solutions
to the physical wave problems, which are based on complex amplitudes, or phasors. Therefore, the
introduction of the complex envelope will allow us to align the physical solutions in acoustics and
optics with the intuition obtained from communication theory regarding modulation.

In this chapter, the analytic signal is derived along with the complex envelope. Emphasis is
placed on the narrowband channel condition that is required for the analytic signal to make sense.
Then, we take a detour and present an overview of the auditory perception of envelope and phase, or
temporal fine structure, as it is commonly referred to. Challenges to the classical and contemporary

50The term “analytic signal” was coined by Jean Ville (1948).
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views are highlighted and a formalism using the complex envelope is contrasted with the standard
usage of real envelope. Finally, the status and the implications of the idea that the auditory system
performs real demodulation is discussed in light of all of the above, where sound is understood to
be best represented by a dual spectrum of carrier and modulation domains.

6.2 The analytic signal

The following overview of the analytic signal compiles a few standard results and draws on derivations
from Cohen (1995, pp. 27-43), Mandel and Wolf (1995, pp. 92-102), and Born et al. (2003, pp.
557-562).

We are generally interested in real-valued signals, which are measurable over time regardless of
the specific physical system that is being analyzed. Let us consider a time signal x(¢) that has finite
energy in the range —oo < t < oo, which implies that it is square-integrable

/OO 2% (t)dt < oo (6.1)

o0

Thus, the Fourier transform X (w) of this signal exists

X (w) = / T a(t)e (6.2)

—00

where w = 27 f is the angular frequency. The inverse Fourier transform is similarly defined as

() = % /_ " X (w)etdw (6.3)

Real signals have the convenient property that their Fourier transform is a Hermitian symmetrical
function,

X(w)=X"(—w) (6.4)

where the * is the complex conjugate operation. This property indicates that all the information
in X (w) is contained in half the complex plane (including w = 0). Intuitively, positive frequencies
are more physically meaningful. As X (w) is generally a complex function, we can redefine the time
signal z(t) as the real part of a complex function z(t), which is the inverse Fourier transform of the
complex function

Z(w) = { g((“) s 0 (6.5)

so the spectrum Z(w) is non-zero only for non-negative frequencies, as physical intuition would
have. The corresponding time signal is then

2(t) = %[x(t) +iy(t)] = % /00 Z(w)e™tdw = % 000 Z(w)e™dw = %/OOOX(w)eiwtdw (6.6)

—0o0

where the last equality used Eq. 6.4 and introduced a factor of 2 to balance the energy of z(¢) and
x(t). We can reintroduce the definition of X (w) from Eq. 6.2 into 6.6

1 [ [ o 1 [~ [ ; /
z(t) = —/ / (e ™ etdt dw = —/ / () e =) dt’ dw (6.7)
™ Jo —00 ™ Jo —00
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This integral can be solved by using the known transform of the complex exponential®

| .

/ e“tdw = 7o (t) +
0

which then yields

) = L /_OO 2(t) [wd(t )+ ] 0 des = (1) + /Oo 2 gy (6.9)

oo t—1¢ s

The final integral is the Hilbert transform of x(¢), so

v alt)

(1) = Hlx(t)] = ~P /_ dr (6.10)

o0

in which at ¢’ = t the integral is evaluated using the Cauchy principal value denoted by P (see
Mandel and Wolf, 1995, pp. 92-97, for a more rigorous derivation). Similarly, the real part of z(¢)
can be obtained from its imaginary part using the inverse Hilbert transform

w(t) = H ' y(t)] = —Hy(t)] = —%7’ /_ i tyg

dt’ (6.11)
x(t) and y(t) therefore make a Hilbert-transform pair. z(t) is called the analytic signal of x(?)

and it can be expressed as
2(t) = x(t) + iH[z(t)] (6.12)

Using this definition, the following equalities follow from Eqs. 6.3 and 6.6, and from Plancharel
theorem of the equality of energy in the time and frequency representations of the signal

/ 22(t)dt = / y?(t)dt = 5/ 2(t)2* (t)dt = 5/ | Z(w)|Pdw = 2/ | X (w)|*dw (6.13)
—00 —00 —00 —00 0
Additionally, the real and imaginary parts of the analytic signal satisfy

/Oo z(t)y(t)dt =0 (6.14)

o0

This property is used in communication theory to obtain two locally-independent components in the
same channel: the real part x(t) is referred to as the in-phase component and the imaginary part
y(t) is the quadrature-phase component (§5.3.1).

6.3 The narrowband approximation and the
complex envelope

The analytic function is most useful for narrowband or quasi-monochromatic signals—different
terms that imply that the spectrum is concentrated in a relatively narrow frequency band Aw around

its center frequency w,

A
Y <1 (6.15)

We

51See Nussenzveig (1972, pp. 389-390) for a rigorous derivation of this expression.
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Throughout this work, we shall refer to this inequality as the narrowband condition and to
its corollaries as resulting from the narrowband approximation. In practice, values as large as
Aw/w. ~ 0.2 may sometime count as narrowband®?. For these signals it is implied that all the
energy is contained in the range

We = —- < |w| §w6+7 Aw,w, >0 (6.16)

and outside this range the spectrum is zero, X (w) = 0. More relaxed bounds may be implied by
the terms bandpass or bandlimited signals, which are not necessarily narrowband.
The analytic signal is a complex function and as such, it can be represented in polar form

2(t) = a(t)e?? (6.17)

with a(t) and ¢(t) the amplitude and phase functions, respectively. In the limiting case of a pure
tone or strictly monochromatic signal, only a single component exists in the spectrum of z(t)
at w,, as the bandwidth is infinitesimally small, Aw — 0. In this case, p(t) = w.t, a(t) = ais a
complex constant, and the real signal can be written as,

z(t) = 2Re [2(t)] = 2Re(ae™") = ag cos(w.t + @) (6.18)

where a = Re (3ay).
This procedure may be extended for narrowband signals that are quasi-monochromatic, in
which both amplitude and phase functions vary in time,

z(t) = a(t) cos[wct + ()] (6.19)

The choice of a(t) and ¢(t), however, is not unique for z(t) (Voelcker, 1966). It is made unique by
using the corresponding analytic signal definition when w, is known

1 . )
2(t) = 5@(15)6“’&“”(” (6.20)

where both a(t) and ¢(t) are real functions, and 0 < ¢(t) < 27. From z(t), the quadrature
component can be readily computed

y(t) = a(t) sin[w.t + p(t)] (6.21)
(see Figure 6.1). If we dissociate the analytic signal from its linear carrier phase w.t, we obtain
g(t) = a(t)e?V) = 2z(t)e <t (6.22)

This expression is referred to as the complex envelope of the real quasi-monochromatic signal z(t).
It is manipulated just like a phasor or a general complex amplitude, which have the same functional
forms (Wheeler, 1941). This important concept allows us to examine the envelope independently of
the specific carrier frequency, as long as the narrowband approximation holds. The narrowband range
of Eq. 6.16 means that with the frequency shift of Eq. 6.22, the complex envelope is non-zero for
—Aw < w < Aw, which is well-separated from the carrier at w.. This requirement effectively entails
that the envelope functions vary much more slowly than the carrier, as T ~ 1/Aw > 1/w. ~ T,
where T is the period of the envelope and T is the period of the carrier. When the separation
between the envelope and carrier bands is incomplete, the signal is no longer narrowband, and the
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Figure 6.1: The real (standard) time representation of a pure tone / monochromatic signal
(top left), its spectrum (bottom left), and their analytic signal counterparts on the right. The
real part of the analytic signal is in black and its imaginary part is in blue. On the top right,
the constant envelope of the tone is marked in red. On the bottom right, the even and odd
components (plotted in black and blue, respectively) are summed to yield the single-sided
spectrum component (in red).

complex envelope (or any modulation function for that matter) no longer has a useful interpretation,
even though the equations still hold (Rihaczek and Bedrosian, 1966).

In fact, the complex envelope leads to a very general result in communication theory, which
shows that any bandpass waveform may be expressed as the real part of the product of the complex
envelope and a carrier

x(t) = Re[g(t)e™'] (6.23)

following Eq. 6.22 (we referred to this result as the third canonical signal form in §5.3.1 and Eq.
5.6). It may be drawn directly from the analytic signal definition, and can also be proven relatively
straightforwardly in an alternative way, by expanding the bandpass signal x(¢) to its Fourier series
(Couch 11, 2013, pp. 239-240)

n=oo

- 2
x(t) = Z cne™t W= ?ﬁ (6.24)

n=—oo

For a general non-periodic signal, we examine the series in the limit of 7" — oo. Once again, we
require that the signal is real, so the negative frequency coefficients are Hermitian symmetric to
*

the positive ones: ¢_,, = ¢. Therefore, we can rewrite the series as a combination of positive
frequencies only

z(t) =Re | ¢y + 2 Z cpe™! (6.25)

n=1

where the DC constant ¢, was taken out of the summation, which was multiplied by a factor of two
to compensate for the energy in the negative frequencies. Now, a bandpass signal does not have
a DC component, by definition, and it is in fact concentrated around the center frequency of the

52 Another definition was proposed in §3.2.2 based on dispersion, which may be more intuitive when frequency-
dependent group delay is taken into consideration: A narrowband range of frequencies is taken such that the group
delay changes only a little from its mean value at the center frequency of the band (the carrier).
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band w,.. This can be expressed by rewriting the summation

x(t) = Re {

By comparing this expression to Eq. 6.22, we immediately see that the complex envelope is equal
to the shifted Fourier series

n—

2 Cnein(w—wc)t] eiwct } (626)

n=1

g(t) =2 cpemtemelt (6.27)
n=1
which means that its spectrum is distributed around w = 0 and it has the bandwidth of the bandpass
signal.

As was mentioned in the introduction, the complex envelope is not standard in the interpretation
of the analytic signal, which is normally decomposed to a real low-frequency envelope and a fluctu-
ating, high-frequency carrier (Dugundji, 1958). This standard definition works well only when the
frequency ranges of the envelope and carrier do not breach one another (Bedrosian, 1963), although
it results in some ambiguity and practical challenges notwithstanding. It appears that a formulation
of the analytic signal that accepts the complex envelope may solve some of the challenges that riddle
it, as is progressively being concluded in a few recent studies and will be discussed in §6.5. The
complex envelope formulation, which effectively treats the carrier frequency as a constant, has been
used independently of the concepts of envelope and analytic signal throughout the development of
modern optics theory (e.g., Born et al., 2003; Goodman, 2017). In coherence theory, it appears to
have been formally connected to the ideas of analytic signal and envelope only in hindsight (Mandel,
1967). Practically the same formulation—of a slowly varying complex amplitude—also arose in the
derivation of the paraxial dispersion equation by Akhmanov et al. (1968, 1969), which is used in the
latter half of this work (§10).

The flexibility in constructing real signals by distinguishing the complex envelope and carrier
domains enables us to construct high-frequency signals that carry low-frequency information using
modulation®®. The information is assumed to vary much more slowly than the carrier and can be
fully contained in a low-frequency complex envelope. The low-frequency information is then referred
to as the baseband or the modulating signal, and its transformed high-frequency version is the
bandpass or the modulated signal (Couch Il, 2013, p. 238). It can be made to modulate either
a(t)—amplitude modulation (AM) (see Figure 6.2), ©(t)—phase modulation, or a combination of
both (AM-FM, see Figure 6.5). In this context, a(t) is called the instantaneous amplitude, and
©(t) is the instantaneous phase. Its derivative is the instantaneous frequency (Carson, 1922;
Carson and Fry, 1937)
dip(t)

dt
which can be made to carry the information using frequency modulation (FM).

Therefore, without loss of generality, physical communication takes place when a modulated
signal of carrier frequency w,. and bandwidth Aw is transmitted to a receiver over a channel. The
convenient properties of the bandpass system make it particularly attractive for communication,
whereas wideband or even ultra-wideband may raise many technical difficulties in practice (see
§5.3.1), partly because of their more ambiguous mathematical and physical nature (see §6.5).

The instantaneous quantities are readily computed from the analytic signal, as these following

relations hold
alt) = /a2 (t) + y2(t) = V/z(t)z(t) = |2(t)] (6.29)

530f course, modulated signals can be formed by real envelopes and fluctuating carriers, as there is ambiguity in
the definition. But we shall usually refer to the complex envelope formulations.

w =

(6.28)
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Figure 6.2: This figure is similar to Figure 6.1, only with an amplitude-modulated tone. The
temporal envelopes of both real and analytic signals are plotted in red in the top plots. The
spectrum contains side bands around the tone carrier. The real signal (bottom right) has
the usual negative frequencies, whereas they cancel out in the analytic signal (bottom right),
because of the contributions of the even (solid black) and odd spectra (dash blue).

o(t) = wet + tan™! % = w,t +tan~! (M) (6.30)

It will be useful to generically expand the instantaneous phase function to different terms of a
power series around ¢ = 0 with®

1 1
o(t) = o + Awt + éAth - EA@#” 4 (6.31)

We refer to the terms from left to right as phase, frequency (also, phase ramp or phase velocity),
frequency velocity, frequency ramp, or phase acceleration, and the last term is frequency
acceleration or phase jerk—borrowing from the naming convention in mechanics (Thompson,
2011).

6.4 Auditory envelope and phase

If the physical time signal is allowed to be completely arbitrary, then it can change equally likely
in its instantaneous envelope and phase functions. Nevertheless, auditory effects of phase and
envelope have been traditionally studied in isolation (e.g., measuring either AM or FM stimuli). An
overarching framework for the two functions has been more prevalent over the last three decades
(Rosen, 1992), although they are still largely viewed as separate entities. However, the separability of
phase and envelope is not obvious if we employ the complex envelope, which requires a combination
of both. In the remainder of this chapter, some of the milestones in auditory research of envelope
and phase sensation are reviewed with emphasis on current trends and challenges, which will help
bolster the case for using a complex envelope in hearing.

54This useful nomenclature was presented by Mark Wickert in http://ece.uccs.edu/ mwickert/ece5675/
without reference, but these terms occasionally appear in literature.
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Figure 6.3: The original setup used by Mayer (1874) to test the continuity of amplitude-
modulated tones that were produced by tuning forks and were interrupted by the rotating
perforated disc.

6.4.1 Auditory sensitivity to temporal envelope

The following is a brief review of a few key findings in the study of amplitude-modulated sound
perception. Historical studies of envelope perception are reviewed in Kay (1982) and a modern
synthesis is found in Joris et al. (2004) with emphasis on physiological findings.

While AM has been long been used as a musical effect—tremolo (tremble, in Italian)—at least
since 1617 (Carter, 1991), AM as a test stimulus had been tested very sporadically until relatively
recently. The first report appears to be by Alfred M. Mayer (1874), who used a perforated disc
in front of a vibrating tuning fork to test at what frequency of interruptions the sound would be
perceived as continuous (Figure 6.3). However, with more careful methods, it turned out that the
interrupted tone never quite appears continuous, even at high modulation frequencies (Wever, 1949,
pp. 408-412).

Perhaps the most interesting early AM research related the significance of the speech envelope
to intelligibility. AM was used in a simple apparatus for speech synthesis, the vocoder, which
partially modeled the speech signal by using the level information from a bank of bandpass filters to
modulate narrowband noise generators (Dudley, 1939), a principle that was simplified later and was
shown to produce intelligible speech (Shannon et al., 1995). A similar principle of bandpass filter
bank analysis was also used in the design of the speech spectrograph, which displayed the running
level fluctuations in the speech signals in different bands (Potter, 1945; Koenig et al., 1946; Potter
and Steinberg, 1950). The importance of hearing the speech envelope properly was demonstrated
with the aid of the modulation transfer function (MTF). Initially introduced into acoustics as a
tool to measure the interaction between the temporal envelope and the room acoustics, it showed
how reverberation tends to reduce the modulation depth of received speech, which corresponds to
a loss of intelligibility (Houtgast and Steeneken, 1973, 1985; see also §3.4.4). Using the analytic
signal, it was later found that severe loss of intelligibility can be the result of low-pass and high-pass
modulation frequency filtering of running speech signals—especially when frequencies in the range
of 4-16 Hz are removed (Drullman et al., 1994b,a).

Modern psychoacoustic research of the perception of electronically-controlled AM may have



112 6.4. Auditory envelope and phase

begun with Riesz (1928). In this experiment, the audibility of beating between two sinusoidal tones
was manipulated by varying the amplitudes of one of the tones, which resulted in maximum sensitivity
among listeners for beating frequency of 3-4 Hz. Much of the subsequent AM research focused
on the most common stimulus type, sinusoidal AM, which has been the standard throughout the
literature

p(t) = [1 + msin(wpm,t)] sin(w,t) (6.32)

The carrier frequency is set by w. and the real envelope is defined by two parameters: the modulation
frequency w,, and the modulation depth, 0 < m < 1. It can be shown that the modulation
depth can be also expressed by the minimum and maximum fluctuating intensity, I,,;, and 1,4z,
respectively:

Tnaz = Lmin (6.33)
[max + [mzn

this expression describes the audible contrast of the modulated sound.

The perceptual sensitivity to AM was formalized with the introduction of the temporal modu-
lation transfer function (TMTF) that directly quantifies the minimum audible modulation depth
at a given modulation frequency (Viemeister, 1973, 1979). The sinusoidal carrier is sometimes
replaced with broadband or narrowband noise, which yield different responses. The effect of the
auditory filter bandwidth is clearly noticeable in sinusoidal and narrowband-noise modulation, which
is not the case in broadband stimuli. The AM signal can be “resolved” to its sinusoidal components
(e.g., bottom plots in Figure 6.2) when it is detected using spectral cues. It takes place when the
signal is analyzed using adjacent narrow bandpass filters that are separated by less than the AM
bandwidth, which results in a much improved threshold. These results will be discussed in depth in
§13.4.

As may be expected from the psychoacoustic observations, envelope processing can also be
traced along all the main auditory nuclei with different specificity in different cell types. Instead
of varying the modulation depth as was done in the earliest studies (from Nelson et al., 1966),
modern animal experiments often test the synchronization to a fully modulated (m = 1) stimulus
instead (beginning in Palmer, 1982), as it decreases with lower modulation depths (Joris et al.,
2004). Functionally, the nonlinearity in the transduction of sound to neural discharges provides the
necessary mechanism for demodulation (Khanna and Teich, 1989a; Nuttall et al., 2018).

The neurally encoded envelope is qualitatively different centrally, as a rate code—spiking pat-
terns at the average AM frequency where instantaneous changes are no longer informative—becomes
much more prevalent downstream after the inferior colliculus (IC) than the temporal code, which
responds to instantaneous changes in the modulation frequency that is observable upstream(Joris
et al., 2004)°°. Additionally, the maximum modulation frequency that can be gradually encoded
decreases downstream from the auditory nerve, by up to an order of magnitude. It is found that
some cells in the brainstem are tuned in the modulation domain and can have either a low-pass or
a bandpass frequency response. While some areas are not highly specified as they synchronize to
both carrier and envelope (e.g., the auditory nerve), others seem to be exceptionally geared to track
the envelope information and sometimes even improve on the auditory nerve (e.g., by sharpening
the response, or improving the signal-to-noise ratio).

The AM stimulus is often treated as magnitude only, without specifically considering the relative
phase of the modulation. However, listeners are known to be sensitive also to modulation phase
across different channels (e.g., Bregman et al., 1985; Yost and Sheft, 1989; Strickland et al., 1989;
Moore et al., 1990; Lentz and Valentine, 2015), an effect that was also recorded in the auditory

m =

55The distinction between temporal and rate encoding is discussed in Theunissen and Miller (1995). Note that
even if rate coding is more prevalent downstream, variations of spiking patterns around the mean can still carry
information (Qasim et al., 2021).
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cortex of awake marmoset monkeys (Barbour and Wang, 2002). It appears that not all tasks are as
sensitive to modulation phase changes (Lentz and Valentine, 2015), though, and not all experiments
establish phase effects (Moore et al., 1991; Furukawa and Moore, 1997; Moore and Sek, 2000).

An influential theory suggests that not only is the IC organized tonotopically according to char-
acteristic frequencies, but also according to modulation frequency, which may explain the salience
of periodicity pitch (Schreiner and Langner, 1988; Langner, 1997) (see §2.4). Another influential
psychoacoustic signal processing model suggests a modulation filter bank that leads to modulation
channels, for which periodicity would be only a special case (Kay, 1982; Dau et al., 1997a; Jepsen
et al., 2008).

6.4.2 Auditory sensitivity to phase

“Phase deafness” and its discontents

The role of phase in hearing has been much more contentious than that of the envelope. Especially,
models that considered it to be immaterial for the ear seemed to have had considerable influence on
the course of research and the general understanding of the ear.

In his monumental work about hearing, Helmholtz concluded the following (Helmholtz, 1948,
p. 127): “..differences in musical quality of tone depend solely upon the presence and strength of
partial tones, and in no respect on the differences in phase under which these partials enter into
combination.” With this conclusion he had vindicated the theory of Georg Simon Ohm (1843),
whose original proposal that the ear performs Fourier-series analysis on incoming complex tones was
heavily criticized at the time by August Seebeck (Turner, 1977). Helmholtz spelled out Ohm’s
law (Helmholtz, 1948, p. 33): “Every motion of the air, then, which corresponds to a composite
mass of musical tones, is, according to Ohm’s law, capable of being analysed into a sum of simple
pendular vibrations, and to each such single simple vibration corresponds a simple tone, sensible to
the ear, and having a pitch determined by the periodic time of the corresponding motion of the
air.” This is usually summarized by the idea that the ear is “phase deaf”. However, Helmholtz
was almost exclusively concerned with compound “musical tones”, which lend themselves to neat
interpretation as the sum of “simple tones”, limited only by the frequency resolution of the ear. All
other nonperiodic and transient sounds (e.g., ‘“jarring, scratching, soughing, whizzing, hissing”) were
classified as “noise” (Helmholtz, 1948, pp. 119 and 127). Incidentally, Ohm himself never discussed
the role of phase in his original paper, which makes Ohm's law a misnomer (Goldstein, 1967b,
Appendix A). Helmholtz had planted the seeds of doubt notwithstanding, by carefully avoiding to
make his conclusion about phase too sweeping. Referring to transient noisy sounds, he added
(Helmholtz, 1948, p. 127): “we must leave it for the present doubtful whether in such dissonating
tones difference of phase is an element of importance.”

Nevertheless, Helmholtz's experimental results could not be replicated and evidence for the
audibility of phase had accumulated over the twentieth century (for historical reviews and results see
Craig and Jeffress, 1962; Goldstein, 1967b; Plomp and Steeneken, 1969; Patterson, 1987; Moore,
2002; Laitinen et al., 2013). Typically, phase-detection experiments compared signals that have
identical magnitude but different phase spectrum and documented noticeable shifts in timbre of
complex tones or in masking threshold, as a consequence of their different phase spectrum. In his
pulse ribbon model for phase detection, Patterson (1987) distinguished local phase effects, which
stem from phase differences between adjacent unresolved frequency components that pass through
the same auditory filter, from global phase effects, which correspond to timing differences across
different filters (but see Laitinen et al., 2013). As all of these studies concluded, the sensitivity to
local phase changes may be attributed to changes to the within-channel signal envelope rather than
to the broadband spectrum associated with a pure place model. Therefore, accounting for phase
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effects requires temporal processing—Ilikely based on phase locking.

Despite its incorrectness, the “phase deafness” adage has effectively transmigrated into various
formulations of the power spectrum model of hearing—the necessary conclusion out of a strict
place model of the cochlea, as Helmholtz theorized. In its simplest version, the power spectrum
model is based on the critical-band concept discovered by Fletcher (1940), who demonstrated psy-
choacoustically that sound is analyzed in the ear by a bank of bandpass filters that together cover
the entire audio range. Different subjective correlates have been found that correspond to the
amount of energy that goes into each filter. Important applications include the pure tone audiogram
(Fletcher and Wegel, 1922), the speech spectrogram (Potter, 1945; Koenig et al., 1946; Potter and
Steinberg, 1950), the articulation index of speech (French and Steinberg, 1947), loudness models
(Zwicker et al., 1957; Moore and Glasberg, 1987), masking models (e.g., Moore, 2013), reverber-
ation time and other room-impulse-response indices (Kuttruff, 2017), and the modulation transfer
function (Houtgast and Steeneken, 1985). Except for the speech spectrogram that is based on
short-term samples, these applications rely on long-term averages of narrowband spectra of the full
broadband signals, which eliminate any contribution of phase terms (see also Fant, 1970, p. 20).
Perhaps it may seem surprising, then, that it is possible to reconstruct speech signals from their
phase spectrum without its corresponding magnitude information, as long as some relatively general
conditions hold (Oppenheim and Lim, 1981). In general, the phase spectrum contains more infor-
mation than the magnitude spectrum, so that arbitrary signals suffer from smaller distortion when

reconstructed from the phase spectrum alone, compared to the magnitude spectrum alone (Ni and
Huo, 2007)56.

Frequency modulation

A much more obvious type of phase change that listeners can detect is frequency modulation (FM),
which entails the modulation of the phase derivative. Perhaps the most common FM stimulus in
hearing research is sinusoidal modulation (sinusoidal FM) of the phase around the carrier

p(t) = asin |w.t + % sin(wpt) (6.34)
where the modulation term is defined by the modulation index Aw/w,, and the modulation
frequency w,,. The peak frequency deviation from the carrier is Aw. While periodic, this
signal has a rather complicated harmonic series, whose relative amplitudes are determined by Bessel
functions of the first kind, J, (Aw/w,,) for harmonic n (Carson and Fry, 1937). The larger the
modulation index is, the more harmonics there are with non-negligible amplitudes.

Sinusoidal FM has been used in different paradigms in hearing and only a handful are mentioned
here. The musical counterpart to it is called vibrato (in analogy to tremolo for AM) and its
associated perceived pitch approximately corresponds to the carrier frequency (Tiffin, 1931; Iwamiya
et al., 1984). If the frequency deviation is very small, then the pitch of the carrier may sound like
a pure tone, which was used to estimate the frequency discrimination associated with pure tones
(Shower and Biddulph, 1931).

Different psychoacoustic results of FM recognition that depend on the modulation frequency,
modulation index, duration, and occasionally on its AM envelope, suggest that different auditory
signal processing may be dominant at low and high modulation frequencies. For example, some

561t is worth noting that there are serious practical difficulties in obtaining the phase spectrum of arbitrary
signals using standard methods for acoustic signal processing (e.g., using the phase obtained by short-time Fourier
transforms), primarily due to phase wrapping and truncation effects of signal windowing. Modern techniques for
overcoming these challenges have been an active field of research in the signal processing of speech (Mowlaee et al.,
2016).
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sensitivity to FM may be explainable by conversion from FM to AM, as the spiking rate in the
channel that analyzes the stimulus depends on its instantaneous frequency, which corresponds to a
level change that is indistinguishable from that caused by an AM signal in some conditions (Zwicker,
1952; Saberi and Haftert, 1995)°". The span of FM signals affects several filters simultaneously,
whose outputs are thought to combine to an excitation pattern that is only dependent on cochlear
place—in the spirit of Helmholtz and Ohm’s law (Zwicker, 1956; Moore and Sek, 1994a,b). However,
this view has been challenged, as the responses to some low carrier-frequency (< 4 kHz) and low
modulation-frequency (< 5 Hz) stimuli appear to rely on temporal (phase) information as well
(Edwards and Viemeister, 1994; Moore and Sek, 1995, 1996; Moore and Skrodzka, 2002; He et al.,
2007, but see King et al., 2019). More recent modeling of AM and FM thresholds suggests that
auditory processing of FM may be altogether distinct than the assumed processing for AM (Attia
et al., 2021). A further possibility is that the auditory sensitivity to FM is determined centrally
(perhaps cortically) by the sensitivity to the fundamental frequency (fy) of the sound, which is
primarily a function of precise place coding in the cochlea (Whiteford and Oxenham, 2023).

Physiological measurements of the auditory nerve of the cat also suggest that while the instan-
taneous frequency of sinusoidal FM is phase-locked to the signal, it is, in fact, converted to AM by
the auditory filter (Khanna and Teich, 1989b). Different cell types of the ventral cochlear nucleus
(VCN) of the guinea-pig were shown to either phase lock to the FM or to synchronize to its enve-
lope, in a manner that depends on the characteristic frequency (CF) and the bandwidth of the cell’s
receptive field (Paraouty et al., 2018). In general, low-frequency VCN cells of larger bandwidth tend
to phase lock to the carrier with little effect of intensity, whereas above 4 kHz, where cells also tend
to be narrowband, they are synchronized primarily to the envelope. However, chopper and onset
cells excel in envelope coding and do poorly in phase locking to the carrier even at low frequencies.
In the different subnuclei of the cochlear nucleus of the bat, single units synchronize to maximum
modulation frequency of 400-800 Hz of sinusoidal FM (Vater, 1982). In general, the degree of
specialization of neurons to FM patterns increases the closer the auditory signal is to the IC (Koch
and Grothe, 1998; Yue et al., 2007). Despite these findings, the low-level physiological availability
of phase cues may not necessarily translate to high-level perception (Kale et al., 2014).

Linear FM is a mathematically simpler signal, but has not been studied as much as sinusoidal
FM. It is defined by a single parameter—the frequency slope (or velocity) Aw

s(t) = asin (wct + %ﬁ) (6.35)
where the carrier frequency w,. is better understood as a center frequency of a chirped pulse around
t = 0, whose frequency slope is Aw = 27 B /T, where B is the bandwidth, and 7" is the pulse width.
It can be seen that this stimulus requires band-limitation in order to contain its spectral range, which
means that a specific envelope must be implemented. Thus, linear FM stimuli must involve some
AM as well.

One of the most interesting features of these stimuli is that sensitivity to them is direction-
dependent, as listeners exhibit lower masking thresholds to upward ramps than to downward ramps,
which emphasizes the role of their phase spectrum (Nabélek, 1978; Collins and Cullen Jr, 1978).
Moreover, it has been found in mammals (beginning in Whitfield, 1957 and Whitfield and Evans,
1965) that some cells in the IC and the auditory cortex are specialized in detecting particular patterns
of FM (e.g., tuned to a certain bandwidth and to the direction of sweep—up or down). While these
results are particularly telling about echolocating bats, they are found in different species and are

57The opposite conversion—between AM and PM—has been recently demonstrated in humans, where the level-
dependent phase response of amplitude-modulated otoacoustic emissions was shown to correlate with the sensitivity
to AM, at frequencies where phase locking was available (Otsuka and Furukawa, 2021).
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thought to reflect the important role that linear FM has in vocalizations (e.g. Casseday and Covey,
1992; Klug and Grothe, 2010). Only one study appears to have tested the linear FM response at the
auditory nerve level. In the auditory nerve of the cat, phase locking to the instantaneous frequency
was demonstrated—both in upward and downward linear chirps (Sinex and Geisler, 1981).

Linear FM is of particular importance in this work, because of its relation to group-delay dis-
persion, its simplicity as a mathematical basis for arbitrary chirps, and the fact that it often leads
to tractable expressions. The jargon associated with it includes many nearly-synonymous terms
from different fields, which may seem obfuscating for the unacquainted reader. These terms are
summarized in Table 6.1 with clarifying, informal definitions, along with near synonyms that do not
necessarily imply linearity.

6.4.3 The envelope and the temporal fine structure

Despite the evident link between the temporal envelope and the phase spectrum, until recently
they have been framed in research largely as separate entities. Using the unified framework of the
analytic signal, a more recent trend in research has started juxtaposing the slow-varying envelope
and the rapid phase changes—the temporal fine structure (TFS). Rosen (1992) defined the TFS
as “..variations of wave shape within single periods of periodic sounds, or over short time intervals
of aperiodic ones as fine-structure information.” The envelope was defined there as: “fluctuations
in overall amplitude at rates between about 2 and 50 Hz as envelope information’®®. This approach
is consistent with hearing research that has not adopted the idea of complex envelope, but instead

has applied the standard analytic-function real envelope with positive frequencies®.

The analytic signal hypothetically enables the separation of the envelope and the TFS from an
arbitrary signal. This idea has been applied several times to illustrate how different aspects of the
auditory signal processing may be dominated by one or the other. For example, speech intelligibility
appears to be dominated by the temporal envelope (Drullman et al., 1994a,b), even when the TFS is
removed (Shannon et al., 1995; Smith et al., 2002; Zeng et al., 2005). In contrast, the TFS appears
to be important in sound localization and pitch (melody and tonal vowels) perception (Smith et al.,
2002; Xu and Pfingst, 2003), voice identification and intelligibility with competing speech (Zeng
et al., 2005), and listening in the dips (Lorenzi et al., 2006). However, the underlying methods have
been challenged for being mathematically unsound (see §6.5), as the information in the discarded
part (the envelope or the TFS) is in fact preserved in the remaining part. Indeed, speech intelligibility
in quiet is also rich with TFS-only cues (Lorenzi et al., 2006).

%8|n a footnote (p. 74), Rosen noted that this definition is not the same as the envelope of the analytic signal,
although the two are related. This assertion is attributed to findings by Seggie (1986), but it is not clear why this is
the case. At present, the community appears to treat the envelope as in the analytic signal (e.g. Moore, 2008).

591t is curious to note that the conceptual origins of the analytic signal and the temporal fine structure are
both rooted in quantum mechanics. The analytic signal was introduced by Gabor (1946), who used the complex
quantum wave function formalism to try and establish the uncertainty relations in hearing, similarly to the ones from
quantum mechanics (Heisenberg, 1927). The “fine-structure constant” was introduced in quantum mechanics by
Arnold Sommerfeld in 1915-1916, who used it to account for the spectral line splitting of the hydrogen atom, due to
relativistic and spin effects (Kragh, 2003). It was probably imported to hearing science by Licklider (1952), who was
also trained as a physicist. Many of the famous results in quantum mechanics are based on stationary wavefunctions
that are time-independent, as harmonic solutions to Schrddinger’s equation are assumed. In these cases, the power
spectrum is the only measurable property, and the phase cancels out. Gabor too suggested (in a footnote) that
Ohm's law for hearing holds, yet his analytic signal accounted for the phase notwithstanding and therefore became
a much more general tool than what it was originally developed for.
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Term

Definition

Frequency

Linear frequency modulation (FM)

Glide

(Frequency) ramp

(Linear) sweep

(Linear) chirp

Frequency velocity

(Instantaneous) frequency slope

Refers to the mathematical signal or modulation technique (Eq.
6.35) that entails a linear change in the instantaneous frequency.
The term used most often in the hearing and speech/phonological
literature for signals that rise or fall in frequency. It does not
necessarily imply linearity, although often it is linear.

A linear FM signal, but with an emphasis of the upward or
downward direction of the instantaneous frequency.

Similar to a ramp, but emphasizes the coverage (either continuous
or discrete) of a range of frequencies, as is often required in
measurements.

Similar to a glide, but used more often in technical literature such
as signal processing and radar communication, and in the context of
bat echolocation and birdsong.

The coefficient Aw of the instantaneous frequency, or of the
quadratic term of the phase (Eq. 6.31).

Similar to frequency velocity, but linearity is implied, at least locally.

Phase

Phase curvature

Quadratic phase

Phase acceleration

The same as frequency slope, with emphasis on the quadratic (or
higher-order) term in the phase function. The term may also relate
to the second-order frequency dependence of the (arbitrary) phase
spectrum.

The general phase function that contains a quadratic term in
frequency or time. This term is most common in Fourier optics,
where the linear phase term is either omitted or treated separately.
The quadratic coefficient of the time-dependent phase function.

Group delay

Frequency-dependent group delay

Group-delay dispersion (GDD)

Group-velocity dispersion (GVD)

The negative derivative of the phase function with respect to
frequency is the group delay of the system, which is non-zero if the
system is dispersive. If the second-derivative is non-zero, then the
group delay is frequency dependent, which implies frequency
modulation for signals that go through the system.

When the group delay is frequency dependent, then it is itself
dispersive. The group-delay dispersion represents this characteristic
of a medium or a structure in which the wave propagates.

The group velocity and group-delay dispersions contain the same
information, but GVD refers more specifically to the effect on group
velocity.

Oscillators

(Long-term) frequency drift

A term that indicates a slow change in frequency that is sometimes
used in oscillator modeling. A functional form is not implied, as it
can be affected by random processes.

Music

Glissando

Portamento

Vibrato

Discrete and usually rapid playing of the intermediate notes
contained in the interval between two notes.

The continuous changing (or bending) of pitch of the interval
between two notes.

The periodic changing of the pitch around its tuning.

Table 6.1: A comprehensive list of jargon related to linear frequency-modulation used in
different disciplines. Many terms do not require the FM to be strictly linear and can be
synonymous in some contexts. The phase- and group-delay terms imply (linear) FM indirectly.
Most terms do not have a closed definition, so their definitions here are provided according
to the best understanding of the author.
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6.4.4 A final remark

The partial reviews above reveal a complex interplay between the envelope and phase functions with
respect to the auditory perceptual roles they realize. However, it is not intuitively obvious why some
situations and stimuli can be processed, ostensibly, with no phase information, whereas in other cases
the phase either contains either an equal amount or most of the information. In order to be able to
answer this question, a coherence theory is required that is suitable for auditory processing, which
makes a distinction between coherent, partially coherent, and incoherent signals. This distinction
delineates the signals for which processing the phase matters and those that do not. Essentially,
these provide the basic conditions for phase locking (processing of TFS) to be altogether possible
and, beyond that, useful. The foundations of such a theory are presented in §7, §8, and §9.

6.5 Challenges to the analytic signal formulation

Even though the analytic signal decomposition is unique, applying it universally to arbitrary signals is
not without complications. This section reviews some of these challenges from different interrelated
perspectives: mathematical, auditory, and conceptual. While the importance of the challenges to the
interpretation of various results is yet unclear, they reflect a real engineering problem that the hearing
system has to routinely solve: to construct unambiguous perceptual representations of broadband
signals that are not mathematically unique.

6.5.1 Auditory challenges
Empirical methods

As was noted in §6.4.3, the standard analytic signal is often employed to obtain an estimate
of the real envelope and TFS. So, for example, one common method has been to resynthesize
signals using decompositions to envelope and TFS, which can be manipulated independently (e.g.,
Drullman et al., 1994b,a; Smith et al., 2002; Zeng et al., 2005; Lorenzi et al., 2006). However, this
procedure has been criticized on several grounds. Ghitza (2001) demonstrated how the envelope
information is regenerated from a Hilbert-transformed signal, which was supposed to retain only
TFS information. These results were confirmed physiologically from auditory nerve measurements
in the chinchilla (Heinz and Swaminathan, 2009). Schimmel and Atlas (2005) showed how the
sub-band (i.e., narrowband filter bank) decomposition of arbitrary signals to a carrier and a real
envelope is both contrived and incomplete, as it requires the modulated signals to be symmetrical
around the filter center frequency—an unrealistic assumption®®. Instead, they suggested a two-
dimensional bi-frequency decomposition (carrier and modulation frequencies) which includes complex
envelope modulation (see also Atlas and Shamma, 2003 for a discussion about the bi-frequency
decomposition relevant to audio signals). Apoux et al. (2011) built on these findings and emphasized
how envelope and TFS manipulation that is suitable for synthetically produced analytic signals
cannot be generalized to arbitrary signals, such as natural speech. The authors demonstrated how
when the assumption of real non-negative envelope is used to decompose signals with a negative
envelope, wideband TFS-only signals that span several critical bands become contaminated with
envelope information in multiple sub-bands. Importantly, these findings were not specific for Hilbert
decomposition and were shown for another envelope extraction technique (squared, low-pass filtered,

60 Another way to frame it is to say that the carrier frequency must be precisely estimated at all times. This
requires some kind of phase locking mechanism (Clark, 2012).
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half-wave rectification)®?.

According to the definition of the analytic signal, the low-frequency amplitude and phase—the
components of the complex envelope—are not meant to be independent. Rather, it is the real
and imaginary parts of the signal that are separable and even they constrain one another (at least
long term). The polar representation of complex functions is neither unique nor separable and both
amplitude and phase are dependent on the real and imaginary values of the function, as is seen
from Eqgs. 6.29 and 6.30 (see also Boashash, 1992 and Picinbono, 1997). While it casts a doubt
on some past claims in studies that found high speech intelligibility after removing the envelope or
TFS information (e.g., Smith et al., 2002; Lorenzi et al., 2006), it is noteworthy that they produced
meaningful results that appear to be relatively robust to variations and consistent with research
based on other methods (Gilbert and Lorenzi, 2006; Sheft et al., 2008; Moore, 2008, 2019).

Bandwidth

As was emphasized throughout this chapter, the analytic signal relies on the narrowband approxi-
mation, as are the majority of communication systems. But, while individual auditory channels are
narrowband, the overall audio bandwidth is ultra-wideband (see §6.6 below). Additionally, due to
the low frequencies involved, there is a large overlap between the overall low-frequency audio and
modulation spectra (see Table 1.2 and Figure 2 in Joris et al., 2004)%2. When signals are modulated
within individual filters, the two spectra are independent and they are perceived in qualitatively
different manner, so they are unambiguous. However, if the modulation frequency (in AM) or max-
imum frequency deviation (in sinusoidal FM) are large enough to be resolved by adjacent filters,
then the modulation components disappear from the perceived modulation spectrum and appear
in the audio spectrum. Conversely, when spectral components are too close to be resolved, they
may beat—appear as modulation instead of two individual pitches. Therefore, this interdependence
between the two domains is dictated by the auditory filter bandwidths throughout the spectrum. It
means that the physical information that produces the acoustic vibrations is conserved either in the
audio or in the modulation domain, but may not necessarily correspond to the physical mechanism
that produced it, which may be either a mode of vibration or modulation, but not both (see §3). It
also means that if signals are dramatically scaled either spectrally or temporally, they may undergo
qualitative perceptual changes that render the message they carry less recognizable, as different
components move between the two spectra.

This challenge is not unique to the analytic signal framework, but it is made especially pertinent
because of its predication on narrowband signals.

611t is interesting to note that a similar discussion is ongoing in neuroscience, where cortical synchrony may be
quantified purely temporally (by measuring phase locking), or both temporally and amplitudinally (using coherence)
(Lachaux et al., 1999). However, in order for this separation to be meaningful, the frequency range has to be
narrowband and even then it is not obvious that the two measures are truly independent (Srinath and Ray, 2014;
Lepage and Vijayan, 2017). These concepts will be discussed with relation to hearing in §7, §8, and §9.

62Depending on the spectral resolution, noise, and complexity of the signals and detector involved, the modulation
can appear as sidebands in the spectrum around the main lobe, or broaden the spectral bandwidth of the center
frequency. Modulation frequencies, though, constitute an additional dimension to the signal and are sometimes
thought of as hidden, as they cannot be straightforwardly detected using normal spectral analysis. Instead, detecting
them requires so-called cyclostationary techniques, such as autocorrelation (Gardner, 1988, 1991; Antoni, 2009).
Demodulation can be seen as a rather specific cyclostationary application that targets a specific channel and does
not necessarily aims to measure the specific spectral modulation content at its output.
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6.5.2 Mathematical challenges

As was noted earlier, the analytic signal prescribes a unique combination of real and imaginary
signals, which do not necessarily translate to unique amplitude and phase, once converted to polar
representation. As the amplitude function determines the degree of AM and the phase function
determines the FM, complex AM-FM signals may not be uniquely decomposable, which makes their
decomposition an ill-posed problem. Loughlin and Tacer (1996) suggested a method to uniquely
determine the AM-FM while satisfying these four conditions (cf. Vakman, 1996): signal level
boundedness must stem from the AM part, bandwidth limitation must apply to the FM, pure tones
entail constant AM and FM, and level scaling applies to AM but not to FM. These conditions are
very reasonable, as long as the system is linear. The solution Loughlin and Tacer proposed is based
on the complex envelope, effectively (see also Atlas et al., 2004). The carrier is obtained from
the time-frequency distribution, which can be used to coherently demodulate the signal (e.g., by
subtracting its carrier; see §5.3.1). Cohen et al. (1999) further explored the problem and proposed
that it may be resolved either with a non-negative amplitude and occasionally a discontinuous
phase, or by forcing continuous phase and accepting the existence of negative amplitudes. The
latter solution can be made to work as a complex envelope. However, the conclusion that the
analytic signal produced ambiguous instantaneous quantities was criticized by Hahn (2003), who
showed that by using complex phase and frequency functions the ambiguity disappears. While
mathematically correct, it requires us to embrace these complex functions that are not particularly
intuitive. Additionally, it does not solve the auditory challenges (§6.5.1) that were observed after
the analytic signal was applied to separate the TFS and envelope.

Broadband signals pose an even more challenging problem than narrowband signals, as they do
not have a unique representation that is based on specific decomposition (e.g., Boashash, 1992).
The perceived signal must be the end-result of a combination of outputs from all the active auditory
filters, which gives rise to the auditory experience. This has led to the development of different
time-frequency analysis methods that are capable of extracting the narrowband frequencies from
broadband signals—often still resorting to the analytic signal along the process (Huang et al., 2009).

An additional challenge for analytic signals has to do with nonstationarity and is briefly mentioned
in §8.2.9.

6.5.3 Frequency and instantaneous frequency

The concept of instantaneous frequency was presented earlier, in passing, where it was defined as
the derivative of the phase with respect to time. For a pure tone that has a linear phase function,
the frequency is a constant and is exactly equal to the instantaneous frequency. However, standard
frequency, as is obtained from Fourier analysis of time signals, measures repeating patterns over the
entire duration of the signal from minus to plus infinity, but is not time dependent in itself. For
example, an arbitrary FM signal can be expressed in the form

2(t) = aexp {z (ww / t m(T)dT)] (6.36)

—00

the instantaneous frequency being w. + ym(t), which describes the frequency deviation from the
fixed carrier frequency. For any m(t) that is non-constant, x(t) is probably not going to be periodic.

How is one to understand the meaning of an instantaneous frequency function that describes
a fluctuation that need not be periodic? The conceptual discrepancy between the two frequency
definitions was noted already by Carson (1922) in his early work on FM and has been debated ever
since (Boashash, 1992; Cohen, 1995, pp. 39-41). Gabor (1946) echoed this question when he
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Figure 6.4: Different types of signals qualitatively plotted on the time-frequency phase plane.
Top left: A monochromatic signal can be unambiguously described in terms of its time-
frequency distribution, although it has to be narrowband in order for the instantaneous fre-
quency to be meaningful. Bottom left: A multicomponent signal with two components that
can be described unambiguously, since their trajectories do not intersect. Top and bottom
right: A multicomponent signal with two components, whose trajectories intersect, is am-
biguous in terms of which trajectory belongs to which component. This figure is based on
Figures 3 and 13 from Boashash (1992).

introduced the analytic signal and noted that our auditory perceptual intuition does not necessarily
coincide with the traditional Fourier view of frequency, which is much more rigid than the common
perceptual experience of time-varying frequencies. Rather, he noted, our hearing experience lies
somewhere in between the steady-state Fourier frequency and the instantaneous one. An ad-hoc
solution in numerous auditory models and other acoustic applications has been to use some variation
of the short-time Fourier transform, which is integrated over short (overlapping) time windows.
This retains short periods of constant spectrum, which can be merged together into a continuous
signal, when the time windows are partially overlapping.

As long as the narrowband approximation is carefully maintained, the instantaneous frequency
appears to have a plausible physical meaning as the deviation from the carrier (plus the carrier)
(Boashash, 1992). Other useful definitions exist, then, which may provide further intuition. For ex-
ample, the instantaneous frequency is the first frequency moment of the time-frequency distribution
of the signal, such as the Wigner-Ville distribution. Or, for a monotonic instantaneous frequency
and large time-bandwidth product, it also determines the group delay of the signal as a function of
frequency (also defined locally for a narrowband signal; see §3.2).

Importantly, the instantaneous frequency loses any coherent meaning for broadband and multi-
component signals. This situation is particularly delicate, because multicomponent signals do not
have a unique representation in terms of variable components, if they intersect on the time-frequency
plane. This is the reason why, in general, broadband signals do not have a unique representation.
An example from Boashash (1992) that illustrates this situation for two components is reproduced
in Figure 6.4. Nevertheless, long and broad sweeps, for example, do not sound ambiguous, so the
instantaneous frequency has a role there that extends beyond a single narrowband filter. The instan-
taneous frequency is also indispensable in nonlinear and nonstationary systems, where the Fourier
transform is generally invalid (Huang et al., 1998, 2009; see also §3.2).
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Figure 6.5: The real time-signal of a linear chirp (top left) and its analytic signal
representation—real and imaginary parts (top right). In the bottom figures, two decom-
positions of the signals are displayed. Bottom left: The standard auditory decomposition
to a real envelope and temporal fine structure. Bottom right: The complex envelope and
carrier of the analytic signal. The complex envelope is displayed as magnitude (dash red) and
unwrapped phase in cycles (dotted black). The constant carrier is in solid black.

6.6 Hearing, modulation, and demodulation

6.6.1 Real and complex envelopes

The difference between real (standard auditory interpretation) and complex (nonstandard) envelopes
is in the phase term. The complex envelope includes the frequency deviation around the carrier,
which is treated as a constant that is subtracted from the total frequency. Thus, the spectrum of
the complex envelope is double-sided and generally includes negative frequencies. A real envelope
function is obtained only when the spectrum is Hermitian-symmetrical, which requires precise sub-
traction of the carrier. So, when the real envelope representation is employed, the carrier is taken
to be part of the TFS, which leaves the phase modulation in the bandpass domain. Mathematically,
this difference can be thought of as two different ways to associate the signal components. Using
the complex envelope, the signal is Re {[a(t)e™")] - [e~*<!]}, whereas the real-envelope signal is
Re {|a(t)| - [e~™!#"]} (see Figure 6.5 for an illustration) (cf., Shekel, 1953). In other words,
according to this standard view of hearing science, the auditory system does not necessarily demod-
ulate the incoming signal phase. To the extent that any demodulation takes place, it occurs only in
amplitude, which can theoretically happen noncoherently (without the phase information, or precise
knowledge of the carrier; see §5.3.1).

There is another important difference that the complex envelope and the demodulation process
emphasize, which the real envelope approach tends to overlook. Modulation is about changes
from the mean—the mean being the static carrier amplitude and frequency. Thus, expressing the
changes from the mean is much more efficiently done with low modulation frequencies rather than
high frequencies, as it requires a smaller amount of information to be communicated between the
transmitter and the receiver. The low-frequency deviation of FM, which the complex envelope
isolates from the carrier along with AM frequencies, may be sampled at a low rate, effectively
achieving lossless compression. It is impossible to take advantage of this economy when the fast
high-frequency changes in the TFS are those that are being communicated.

Whether the TFS is demodulated or not, a complex envelope representation is more general, as
it retains the option for noncoherent detection. Indeed, some hearing research trends suggest that
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a conceptual transition from real to complex envelope may be timely. The significance of the TFS
information (as currently defined) in normal hearing is gradually understood to be critical to many of
its functions (Moore, 2008, 2014, 2019). At the same time, there may be a warming up to the idea
of auditory demodulation, especially when the baseband components can be directly identified in the
system (e.g., Khanna and Teich, 1989a,b; Teager and Teager, 1990; Feth, 1992; Khanna and Hao,
2001; Khanna, 2002; Cooper, 2006; Nuttall et al., 2018). The hypothesis that AM and FM may
be centrally coded in the same channel, which depends only on the modulation frequency of either
AM or in FM, is also notionally closer to the demodulation idea (Moore et al., 1991). In animals
such as bats, whose audible bandwidth can reach up to 100 kHz, modulation of very high-frequency
carriers is standard so that synchronization can only happen in baseband—effectively after the signal
has been noncoherently demodulated (e.g., Vater, 1982; Bodenhamer and Pollak, 1983). As was
implied in §6.5, the analysis of these cases may benefit from the intuitive appeal of the complex
envelope, which appears to have the potential to solve at least some of the mathematical difficulties
associated with real envelopes. A complex envelope (even when this term is not used explicitly) seems
to better represent practical problems in hearing, such as estimating the fundamental frequency of
speech through frequency-following response (FFR; Aiken and Picton, 2006), or accounting for the
effects on speech intelligibility of differential envelope delay or time reversal, which are applied to
different bands of the broadband speech spectrum (Greenberg et al., 1998; Greenberg and Arai,
2001). Importantly, the complex envelope as a mathematical tool also coincides with the common
complex amplitude or phasor formalism that is used throughout wave physics, including most of those
that are used later in this work. This may enable a more intuitive interpretation of some solutions,
which are readily understood to be separable to carrier and modulation domain information®3.

It must be remembered that this discussion merely relates to different ways to represent signals
mathematically, which ultimately all map the very same real physical signal. However, different
representations may better correspond to different perceptual counterparts produced by the hearing
system.

6.6.2 Two spectra

Aside from phase deafness, Helmholtz's legacy reflects an additional important cause that may
be implicated in the predominance of a real envelope interpretation that is divorced from true
demodulation—as is the norm in hearing science. Ever since ancient Greece, knowledge in acoustics
was intertwined with musical understanding—of intervals, tuning, instruments, consonance, disso-
nance, etc. (Hunt, 1992). The scientific and mathematical advents of the 19th century—mainly
Fourier's theory—provided appealing solutions to simple vibrating systems and, as Ohm proposed,
had a high explanatory power for a more general range of problems. However, without fail, the
emphasis throughout has been tones, both simple and complex—how they interact, or how musical
they sound. Pitch, according to this view, is the ultimate acoustical percept. Because pure-tone
pitch (rather than periodicity, residue, or binaural pitches) is determined primarily by frequency, it
is perhaps reasonable that precise spectrum analysis, as implied by the pure place model, is the

63While approached from a numerical perspective without reference to the mathematically complexity of the
envelope, a recent computational model of cochlear processing using the envelope as its primary object has shown
an impressive predictive power for several key auditory phenomena, including an effective extraction of the auditory
filter responses (Thoret et al., 2023). It relies on a variation of the empirical mode decomposition algorithm (limited
to a single iteration), which separates the upper and lower envelopes and inherits the periodicity contained in both
(Huang et al., 1998). While not referred to as complex envelope, this method retains all the information in the
signal—notably any asymmetry that is contained in its envelope—which is equivalent to using the complex envelope
of the signal minus the static carrier signal. This procedure is indeed expected to be most suitable for dealing with
nonstationary “improper” real-world signals (§8.2.9).
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most important aspect of hearing. It is natural then that frequency resolution becomes key to un-
derstand auditory perception and design. For example, Zweig et al. (1976) discussed the “cochlear
compromise” of the cochlear mechanical design, which entails a trade-off between minimal reflection
of sound and maximal spectral resolution. Extrapolating from this perspective, envelope detection
becomes a secondary feature of the system, which can use it to extract additional information from
the signal that relates the varying level of specific spectral components. Furthermore, if the signal
information is mainly in its magnitude spectrum, then modulating it is an extra layer of informa-
tion that is optional. This logic entails that the signal does not have to be demodulated, because
there may be no underlying message to be received, aside from the spectrum itself. However, if the
modulation spectrum is equally important as the audio spectrum, then it is not at all obvious that
a very sharp frequency resolution is the correct design goal for the system.

Let us compare the auditory filter design problem with that of generic communication and optical
imaging systems. In standard communication (of a single carrier), it is the low-frequency information
that is of the ultimate importance (e.g., the message). It modulates a somewhat arbitrary carrier,
which is selected according to its physical properties and can address different requirements of
information transmission: What is the required channel bandwidth? How much energy is required
to generate the carrier? How far can it travel? How noisy does it become? How much interference
is it subjected to by competing transmissions? How much error does it typically accumulate? How
complicated is it to modulate and demodulate these frequencies? And so forth. However, once the
carrier is received and demodulated, its role is over and it does not hold any additional information
but its very own channel identity®*.

In optical imaging, as in the eye, the image is the modulation pattern—the complex envelope
that is manifest in colors, which are analogous to pitch. Light energy is carried at frequencies that
cannot be biologically tracked and are immediately demodulated in the retina. The color—really,
the visual channel—obviously carries some information (similar to cochlear place information). But
a colorless (black and white) image still contains much of the optical information. Either way, just
as in other communication systems, the message is contained in the (complex) envelope patterns,
which modulate the light. Therefore, visual imaging can be understood as a form of communication,
as was argued in §5.4.

Given the finite bandwidth of the auditory system—its very low (f;, = 20 Hz) and not very high
(fu = 20 kHz) cutoff frequencies—its inputs and outputs are often treated as baseband signals that
can be directly sampled without demodulation, e.g., at a sampling rate of 44.1 kHz, which samples
all frequencies from 0 Hz. For example, Fastl and Zwicker (2007, p. 158) conveniently assume that
the lowest critical band runs from 0 Hz, or Oppenheim and Lim (1981) directly compares processing
the speech audio phase spectrum to a visual image modulation phase spectrum. This switch from
bandpass to baseband signaling can only be done because of the relatively low frequencies involved
in hearing, but it would be out of the question if they were much higher. Informationally speaking,
however, it is wrong, since hearing is a true bandpass system.

One may ask, then, why hearing is any different from standard communication systems? After
all, it is certainly used for communication, so is there any particular reason why it should not be
configured as a communication system? One answer may have to do with the fact that the ear
contains many more channels than the eye, or most typical radio receivers. It allows for very rich
spectral coding, for which the modulation information is relatively secondary. However, even as a
classical spectrum analyzer or pitch interpreter, it still has to acquire the onsets and offsets of the

64Incidentally, a general and modality-independent neural model suggested that communication between neurons
in the thalamus and cortex does exactly what we would expect it to do according to the communication theory:
it rate-codes only the channel identity, while it temporally-codes the actual message (Hoppensteadt and Izhikevich,
1998).



Adam Weisser 125

different tones, as well as their varying levels. These can all be thought of as AM envelope functions,
without any loss of generality (e.g., Kay, 1982).

A related argument for why hearing is different from other communication systems is that it
clearly violates the narrowband approximation, if all the channels are considered en masse rather than
individually. Thus, the human ear may be more usefully classified as an ultra-wideband (UWB)
system, which can be defined somewhat differently according to the application. In radar systems, for
example, an UBW system is said to have a relative bandwidth that satisfies (fz — f)/(fua + f1) >
0.25 (Taylor, 1995, p. 2), which for human hearing is close to unity(!). In communication systems,
UBW systems are defined by having bandwidth larger than 20% of the center frequency (Arslan
et al., 2006, p. 11)—a limit that is breached in hearing no matter how the center frequency is
defined. Similarly engineered systems to hearing may exist in impulse radio or multiband UBW
communication systems—two UBW techniques which distribute the large bandwidth in pulse trains,
or divide the signal into several carriers, respectively (Arslan et al., 2006, pp. 11-12). The same
bandwidth criteria for UWB systems are also applied in optical communication (Yao et al., 2007).
Thus, as a communication system, hearing appears to have a peculiar design that may well qualify
as UBW.

Because the carrier-centered and envelope-centered perspectives on hearing are complementary
points of view, deciding which one is more faithful to the system’s internal logic may seem like a
moot exercise. Nevertheless, the envelope-centered perspective—that of true modulation—would
imply that the specific identity of the carrier—the exact pitch—is of secondary importance. If the
same message can modulate different carrier(s) and it can be decoded equally well, then it would
strongly support an envelope-centered perspective. This “spectrum-invariance” is indeed the case
often—within some constraints—as a verbal message can be equally well received if spoken by
two different voices of different fundamental and formant frequencies, or a musical piece can be
similarly well-received if it is played for different arrangements and in different keys. This does
not diminish from the importance of spectral range and across-channel periodicity effects that are
uniquely auditory. And indeed, music and speech can be equally well perceived also at different tempi,
which entails scaling of the low-frequency envelope, but not of the carrier spectrum. Therefore, there
is a broad category of messages that appears to be relatively invariant to both spectral and temporal
changes, which suggests that the auditory system simultaneously extracts information from at least
two dimensions. It also suggests that the system may not be constrained to the spectrum nor to
the complex envelope, as long as the acoustic information can be extracted from one of them, or
from the combination of both.
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