
Chapter 8

Acoustic coherence theory suitable for

hearing

8.1 Introduction

In the previous chapter several perspectives on coherence were reviewed that have found their way
into acoustics and auditory research in one way or another. In synthesizing the di�erent perspectives,
we aim to be able to track the coherence of a sound signal all the way from the source to the
brain. For this purpose, the scalar coherence theory from optics seems to be almost ready-made
to import into acoustics. The only adaptations that have to be made are in emphases and in the
connections to existing research in acoustics, which have often employed a di�erent jargon (see
Table 7.1). The optical theory provides a rigorous basis, upon which it will be easier to introduce
the topic of synchronization. This should then enable us to apply it to the coherence perspectives
of communication theory and to a large extent�to the auditory brain. This chapter is therefore
dedicated to the presentation of the scalar-wave coherence theory along with examples that are
relevant to hearing. As experimental data about the coherence properties of acoustical sources are
relatively scarce, the chapter is supplemented also by data presented in �A, which demonstrate some
of the concepts using realistic sources.

It should be emphasized that this chapter does not present any new science, as most ideas
from coherence theory have appeared in acoustics at one point or another. However, to the best
knowledge of the author, there has been no systematic e�ort to formally integrate coherence and
acoustic theories in a consistent and rigorous way. Nor has there been an e�ort to intuitively integrate
the fundamental concepts of coherence into hearing theory, even though some interpretations of it
have found wide use. Therefore, the presentations in this chapter and in the appendix (�A) attempt
to bridge this gap. The intuition and concepts that are obtained here will be useful throughout the
remainder of this work.

In adopting the scalar coherence theory, we are knowingly going to neglect the velocity �eld, which
has been often analyzed in the context of acoustic coherence (e.g., in sound intensity, Jacobsen,
1979, 1989, or in modeling of microphone array responses, Kuster, 2008). Because the ear is
sensitive only to acoustic pressure, coherence expressions involving velocity are of relatively little
appeal. Therefore, we shall limit our attention to plane waves only, where the pressure and velocity
are in phase and the intensity can be expressed using the pressure alone. Where it applies to source
functions that are non-planar, the far-�eld approximation to plane waves should be assumed (see
Table 3.1). Alternatively, secondary sources can be used (�4.2.2).

The terminology used throughout this chapter adheres to the physical optics theory of coherence,
rather than to the acoustical one. The main reason for this is that it is more consistent and
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is embedded more deeply in wave physics, whereas acoustical correlation has not been equally
elaborated and integrated in standard acoustical theory and practice. Additionally, by using the
term coherence rather than correlation, we distinguish between wave-physical similarity, as can be
manifested in interference phenomena, and the mathematical and statistical operation that represents
it in theory, which is largely based on the correlation function. Refer to Table 7.1 for coherence
related terms in optics and acoustics.

Unless otherwise noted, the presentation of coherence theory is based on the texts by Mandel
and Wolf (1995), Born et al. (2003, pp. 554�632), Wolf (2007), and to a lesser extent on Goodman
(2015).

8.2 Coherence and interference

The standard way of introducing coherence in wave optics is by analyzing the interference pattern
that is observed from a source of light that radiates through two pinholes (see Figure 8.1). According
to Huygens principle (� 4.2.2), when the pinhole diameter is small with respect to the wavelength
of the light, it can be taken as a (secondary) point source. As the theory deals with a high-
frequency electromagnetic �eld, it is assumed that only average intensity patterns are measurable
and, importantly, that the interference pattern is static, due to stationarity. The latter assumption
stems from the statistical regularity of the source, which goes through the order of 1014 cycles per
second for light in the visible spectrum. None of these assumptions is particularly relevant to the
acoustic signals sensed by the auditory system, but it will be easier to develop insight for the basic
coherence concepts through this standard theory, and then modify it as necessary. The basic theory
deals with classical scalar electromagnetic �elds, which entails that polarization e�ects that stem
from di�erences in the electric and magnetic components are neglected71. This means that this
theory can hold for the scalar acoustic pressure �eld as well. While there has been much work done
on the acoustic velocity-pressure �eld coherence in acoustics (e.g., Jacobsen, 1989), this topic seems
to be of little direct relevance to the pressure-based hearing and will not be explored here. Hence,
sound intensity is used here in its scalar form, which is proportional to sound power and the pressure
squared only in the plane wave approximation (Table 3.1). Thus, intensity will be treated as a scalar
and its directionality will be neglected.

8.2.1 The coherence function

Let p(r1, t) and p(r2, t) be the sound pressures at time t and points r1 and r2, respectively (Figure
8.1). The measurement is set up in a way that the pressure �eld at point r is completely determined
by the contributions arriving from r1 and r2. This is a given in a free-�eld measurement where the
sound pressures represent point sources. It can also be ensured far from the source by encircling
the points with pinholes, which approximate the pressure arriving from them to point receivers that
become secondary point sources, according to Huygens principle. We would like to calculate the
total intensity that is measured at point r, as a function of the contributions from p(r1, t) and
p(r2, t). We consider the intensity to be a random process72, which has to be averaged over time

71More advanced theory deals with polarization e�ects as well, which are of no relevance in acoustics. The
classical domain is su�cient to explain most imaging e�ects, but an extensive quantum coherence theory has also
been developed. See Mandel and Wolf (1995).

72A random or stochastic process relates to a variable or variables that are drawn from a certain probability
distribution. Without getting into any mathematical formalities, whenever we discuss arbitrary signals or waves,
they can be modeled as a random process, which facilitates certain types of analyses. Stochastic processes are
distinguished from deterministic processes. See the cited literature in �8.1 for more formal short introductions. For
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Figure 8.1: The basic setup of the coherence problem. The pressure �eld p(r, t) is represented
by the wavefront arriving from the left that impinges on two pinholes on plane A. The
radiated �eld from the pinholes is modeled as secondary point sources, neglecting any e�ects
of di�raction from the �nite pinhole size. The sources interfere on a screen B, where the
intensity I(r, t) is recorded.

and sampled multiple times in order to be estimated properly. The intensity in r is given by the
ensemble average of the pressure square in r

⟨I(r, t)⟩t = ⟨p∗(r, t)p(r, t)⟩t (8.1)

The angle brackets ⟨· · · ⟩t represent the ensemble averaging operation with respect to samples in
time, which are indicated by the subscript t. The asterisk denotes the conjugate value operation.
We further assume that the pressure �eld is stationary73, so the intensity is independent of time, by
de�nition

⟨I(r, t)⟩t ≡ I(r) (8.2)

In general, the expectation value (i.e., the average) for a function g(t) is de�ned as

⟨g(t)⟩t = lim
T→∞

1

2T

∫ T

−T

g(τ)dτ (8.3)

If g(t) represents a stationary process which is also ergodic, then its long-term average value
as de�ned by this integral is equal to the ensemble average, as any sample from its probability
distribution at any particular moment is representative of the entire ensemble.

For a pressure wave propagating from r1 and r2 to r, the associated propagation time delays
to the screen are

t1 =
|r − r1|

c
t2 =

|r − r2|
c

(8.4)

where c is the speed of sound in the medium. For a small source (or pinhole) size, the pressure
amplitude in r is inversely proportional to the distance. We can introduce complex amplitudes a1

an extensive introduction, see, for example, Bendat and Piersol (2011). For a shorter introduction, see Middleton
(1996).

73Two general types of stationary processes are distinguished. A strict-sense stationary process is de�ned to
be independent of time. Thus, such a process can be sampled at any time point without a�ecting the average.
White noise is the simplest such process. A wide- or weak-sense stationary process has a constant average, and
a time-invariant cross-correlation function, which depends only on the time di�erence and not on the absolute time
points of the process. Wide-sense stationarity requires that the second moments of the process exist. In the text,
whenever stationarity is invoked, it is meant in the wide sense.
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and a2 to designate the respective complex amplitudes in r, which include also the e�ect of the
distance. The intensity in r is therefore the ensemble average of the superposition of the pressure
contributions arriving from r1 and r2, according to Eq. 8.1

I(r) = |a1|2⟨p∗(r1, t− t1)p(r1, t− t1)⟩t + |a2|2⟨p∗(r2, t− t2)p(r2, t− t2)⟩t+
2Re [a∗1a2⟨p∗(r1, t− t1)p(r2, t− t2)⟩t] (8.5)

Using the stationarity property again, we de�ne the mutual coherence function from the last
term of Eq. 8.5

Γ(r1, r2, τ) = ⟨p∗(r1, t)p(r2, t+ τ)⟩t (8.6)

with a time di�erence variable τ = t1 − t2, which can be measured from any time t because of
stationarity. Speci�cally, at τ = 0, the mutual coherence function Γr1, r2, 0 is referred to as the
mutual intensity. This is the cross-correlation function of the two pressure functions. Additionally,
the average intensities right at the two pinholes are given by

I1(r) = |a1|2⟨p∗(r1, t)p(r1, t)⟩t I2(r) = |a2|2⟨p∗(r2, t)p(r2, t)⟩t (8.7)

where it is implied that they are shifted to t1 = t2 = 0 due to stationarity. Therefore, Eq. 8.5 can
be rewritten as

I(r) = I1(r) + I2(r) + 2Re [|a1||a2|Γ(r1, r2, τ)] (8.8)

The �rst two terms represent the intensity contribution of each pinhole when the other one is blocked.
We can now de�ne the complex degree of coherence

γ(r1, r2, τ) =
Γ(r1, r2, τ)√
I1(r)

√
I2(r)

=
Γ(r1, r2, τ)√

Γ(r1, r1, 0)
√
Γ(r2, r2, 0)

(8.9)

whose absolute value is bounded between 0 and 1 because of the normalization. We will often refer
in the text to the complex degree of coherence simply as �coherence�. Using all of these, we can
write the law of interference for stationary pressure �elds (of plane waves), which is naturally
identical to the one for scalar optical �elds,

I(r, τ) = I1(r) + I2(r) + 2Re
[√

I1(r)
√
I2(r)γ(r1, r2, τ)

]
(8.10)

In the narrowband approximation, the pressure wave is monochromatic and γ can be meaningfully
expressed using a complex envelope and the following identity instead

γ(r1, r2, τ) ≡ |γ(r1, r2, τ)|ei[α(r1,r2,τ)−ωt] (8.11)

with ω being the average angular frequency and

α(r1, r2, τ) = ωτ + arg γ(r1, r2, τ) (8.12)

The angle α changes very slowly relatively to the period of the mean frequency, 1/ω. We de�ne

δ = ωτ = ω(t1 − t2) =
2π

λ
(|r1 − r2|) (8.13)

where λ = 2πc/ω is the mean wavelength. Thus, the interference law of Eq. 8.10 can be rewritten

I(r, τ) = I1(r) + I2(r) + 2
√
I1(r)

√
I2(r)|γ(r1, r2, τ)| cos [α(r1, r2, τ)− δ] (8.14)
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In case that the two pressure source contributions at r have equal levels, I = I1(r) = I2(r), then
Eq. 8.14 simpli�es to

I(r, τ) = 2I {1 + |γ(r1, r2, τ)| cos [α(r1, r2, τ)− δ]} (8.15)

which describes the intensity fringes that form as a result of interference (for example, see Figures
7.1 and 7.2). When |γ| = 1, the two waves are said to be completely coherent and the fringes
exhibit maximum contrast with areas of no light between the peaks. When |γ| = 0, no interference
takes place and the two waves are completely incoherent, yielding a constant intensity pattern
with no fringes. Everything in between, 0 < |γ| < 1, is partially coherent, which entails reduced
fringe contrast with decreasing degree of coherence, until they are no longer visible (see Figure 8.2).
It is possible to quantify the fringe contrast using the maximum and minimum intensities obtained
when the cosine is maximum

Imax(r) = 2I(1 + |γ(r1, r2, τ)|) (8.16)

and minimum
Imin(r) = 2I(1− |γ(r1, r2, τ)|) (8.17)

Accordingly, the visibility of the interference pattern is de�ned as

V =
Imax(r)− Imin(r)

Imax(r) + Imin(r)
(8.18)

which is V = |γ(r1, r2, τ)| when I = I1(r) = I2(r). In this view, the argument of γ determines
the relative positioning of the fringes74. For arbitrary intensities, I1(r) ̸= I2(r), the visibility can be
computed in general from Eqs. 8.15 and 8.18,

V =
2√

I1(r)
I2(r)

+
√

I2(r)
I1(r)

|γ(r1, r2, τ)| (8.19)

The interference law of Eq. 8.14 can be rewritten in yet another way, which provides additional
insight into partial coherence,

I(r, τ) = |γ(r1, r2, τ)|
{
I1(r) + I2(r) + 2

√
I1(r)

√
I2(r) cos [α(r1, r2, τ)− δ]

}
+ [1− |γ(r1, r2, τ)|] [I1(r) + I2(r)] (8.20)

This formulation splits the interference pattern to a coherent part with intensities proportional to
|γ(r1, r2, τ)| and relative phase di�erence of α(r1, r2, τ)−δ, and an incoherent part with intensities
proportional to 1 − |γ(r1, r2, τ)|. Thus the total intensity Itot is a sum of coherent and
incoherent contributions, Icoh and Iincoh, respectively

Itot = Icoh + Iincoh (8.21)

Following Eq. 8.20 and neglecting the cosine term

Icoh
Iincoh

=
|γ(r1, r2, τ)|

1− |γ(r1, r2, τ)|
(8.22)

and therefore
Icoh
Itot

= |γ(r1, r2, τ)| (8.23)
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Figure 8.2: Three kinds of coherence in the simple interference experiment. The plot on the
left describes complete coherence, which shows constructive interference using a coherent sum
(linear in amplitude). The plot on the right shows an incoherent sum (linear in intensity) that
exhibits no interference. The middle plot describes the general situation in which interference
exists, but is not complete, giving rise to partial coherence. The curves can represent the
visibility pattern of the fringes in an interference experiment. The plots are a reproduction of
Figure 3.2 from Wolf (2007, p. 35).

This insightful formulation indicates that any partially coherent intensity pattern can be decomposed
into completely coherent and completely incoherent intensity contributions.

Examples of coherent, partially coherent, and incoherent illuminations are given in Figure 8.3.
The partially coherent objects are obtained by combining a coherent source and an incoherent source
in di�erent amounts, according to Eq. 8.21.

8.2.2 Temporal coherence and spatial coherence

Two idealized types of coherence are distinguished based on the expressions above. The �rst one is
spatial coherence, γ(r1, r2, τ0), which is estimated at two di�erent points in space, but employs a
�xed time di�erence τ0, usually τ0 = 0, for convenience. The second type is temporal coherence,
γ(r, r, τ), which is determined solely by the time di�erence τ assuming that the measurement
positions of the two disturbances are the same, r1 = r2. In real �elds, the temporal and spatial
coherence are not necessarily independent. Cartoon illustrations of temporal and spatial coherence
are given in Figure 7.3.

For stationary acoustic signals, the temporal coherence is, in fact, the normalized autocorrelation
function of p(τ)

γ(r1, r2, τ) = γ(r, τ) =
Γ(r, τ)

I(r)
=

∫∞
−∞ p∗(r, t)p(r, t+ τ)dt∫∞

−∞ p∗(r, t)p(r, t)dt
= Rpp(r) (8.24)

using Eq. 8.9. The notation Rpp is standard for autocorrelation in signal processing, but will not be
used here.

The distinction between temporal and spatial coherence provides an informative tool for analysis
on di�erent levels. It is also regularly employed in acoustics and hearing, only not by this name.
For example, one may think of interaural acoustic cross-correlation (IACC) as a spatial coherence
function for the two �xed locations of the left and right ears (�8.5). Temporal coherence, in contrast,
is used in some models that probe monaural hearing, which is sensitive to the time course of signals

74When applied to pressure waves, the term audibility will be more appropriate than visibility, or the more neutral
term contrast, as audibility is often used in hearing to designate that a stimulus or a manipulation thereof is above
the individual's threshold. However, visibility is the more standard term in optics and we will used it below.
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Figure 8.3: Two sets of images done under incoherent (left), partially coherent (middle), and
coherent (right) illumination. The images were obtained using two di�erent light sources.
The coherent source was a green Nd:YAG laser (λ = 532 nm), whose beam was spread with
a diverging lens and a one (top) or two (bottom) di�erent types of di�users. The incoherent
images employed a green light-emitting diode (LED) light, embedded in a bulb, of a slightly
di�erent wavelength than the laser, which is almost completely incoherent and di�use from
the source (see, for example, Mehta et al., 2010). The two light sources were illuminating
the object simultaneously in the partially coherent image. However, as the laser light was
signi�cantly more intense than the LED, it was employed with di�erent amounts of di�usion,
to get di�erent degrees of partial coherence, according to Eq. 8.21. Note that the two light
sources arrive from di�erent angles: the coherent source was almost frontal, whereas the
incoherent source came from the top right of the object.
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and speci�cally to periodicity, which appears as peaks in the autocorrelation function. However, the
input in these models is often broadband, which violates the narrowband assumption and therefore
behaves somewhat di�erently.

8.2.3 The cross-spectral density and spectrum

According to theWiener-Khintchin theorem, the power spectral density of a wide-sense stationary
random process with zero mean is the Fourier transform of its autocorrelation function. In our case,
it can be applied to the mutual coherence function, so

S(r, ω) =

∫ ∞

−∞
Γ(r, τ)e−iωτdτ (8.25)

with S being the power spectral density of the process. The inverse transform applies as well

Γ(r, τ) =
1

2π

∫ ∞

0

S(r, ω)eiωτdω (8.26)

Only positive frequencies are used in the integral with the assumption that the signal is taken to be
analytic (see �6.2).

Similarly, according to the generalized Wiener-Khintchin theorem, the mutual coherence
function itself�a cross-correlation function�is the Fourier transform pair of the cross-spectral
density W

W (r1, r2, ω) =

∫ ∞

−∞
Γ(r1, r2, τ)e

−iωτdτ (8.27)

and the inverse applies again,

Γ(r1, r2, τ) =
1

2π

∫ ∞

0

W (r1, r2, ω)e
iωτdω (8.28)

It is important to emphasize that the cross-spectral density function spectrally depends on ω
alone only in the case of stationary signals, but it is not true in the more general case of nonstationary
signals that are broadband. It can be seen by inspecting the correlation function of the pressure �eld
in spectral-spatial coordinates, assuming that the pressure function has a Fourier transform (Mandel
and Wolf, 1976)

⟨P ∗(r1, ω1)P (r2, ω2)⟩t =
∫ ∞

−∞

∫ ∞

−∞
⟨p∗(r1, t1)p(r2, t2)⟩teiω1t1e−iω2t2dt1dt2

=

∫ ∞

−∞

∫ ∞

−∞
⟨p∗(r1, t1)p(r2, t1 + τ)⟩tei(ω1−ω2)t1e−iω2τdt1dτ (8.29)

The ensemble average in the integrand is simply the mutual coherence function, which is independent
of t1 for stationary signals. Therefore, the �rst transform gives a delta function with the frequency
di�erence in the argument, whereas the Fourier transform of the mutual coherence is simply the
cross-spectral density

⟨P ∗(r1, ω1)P (r2, ω2)⟩t = W (r1, r2, ω1)δ(ω1 − ω2) (8.30)

Hence, for ω1 ̸= ω2, the cross-spectral density is 0, due to stationarity, which means that waves at
di�erent frequencies are completely incoherent to one another (see also Bendat and Piersol, 2011,
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pp. 442�448). This is not true for nonstationary processes and coherence, as will be discussed in
�8.2.9.

The spectral density expressions are known in acoustics simply as �coherence�, adopted from
signal processing of random processes (e.g., Shin and Hammond, 2008). They are much more
commonly used in acoustics than the coherence representation (using temporal coordinates), which
is sometimes referred to as (cross-)correlation and sometimes as coherence75. A complete coherence
theory using spectral coherence was derived by Wolf (1982, 1986) and will be reviewed in �8.2.6.

8.2.4 Coherence time and coherence length

It has long been known that interference e�ects in light cannot be empirically observed if the
disturbances are too far from the (secondary) source (e.g., obtaining visible interference fringes with
sunlight is limited to very short distances from the pinholes; Verdet, 1869, pp. 72�124). This is
true for sound waves too�when the pressure disturbances propagate they gradually acquire phase
distortion, which eventually makes them too dissimilar to be capable of interfering. It manifests as
spectral broadening of the original source output, and misalignment of the phases in the superposed
�eld functions. Two quantities are particularly handy in quantifying the reach of coherence, inasmuch
as interference e�ects can be measured (i.e., the fringes are visible, or V > 0 in Eq. 8.18). The
�rst one is coherence time, which is the relative delay that can be applied in the autocorrelation
function before the fringes of the interference pattern disappear, so it can be considered e�ectively
incoherent. The coherence time ∆τ is inversely proportional to the spectral bandwidth of the source
∆ω, so that

∆τ ∼ 2π

∆ω
(8.31)

There are di�erent ways to prove this expression, such as by considering an ideal detector with
�nite integration time that would measure a di�erent level if the input interferes with itself during
integration (Born et al., 2003, pp. 352�359). A more rigorous way to de�ne the coherence time is
based on the self-coherence of the source

Γ(τ) = ⟨p∗(r, t)p(r, t+ τ)⟩t (8.32)

which is essentially its autocorrelation function. The coherence time can then be de�ned using the
second moment of the squared modulus of the self-coherence function (the �rst moment is zero due
to stationarity) (Mandel and Wolf, 1995, pp. 176�177)

∆τ 2 =

∫∞
−∞ τ 2|Γ(τ)|2dτ∫∞
−∞ |Γ(τ)|2dτ

(8.33)

Similarly, the e�ective spectral width of the source can be de�ned as the second moment of the
spectral density function, centered around the mean frequency ω̄

∆ω2 =

∫∞
0
(ω − ω̄)2S(ω)2dω∫∞

0
S(ω)2dω

(8.34)

where the mean frequency is the �rst moment

ω̄ =

∫∞
0
ωS(ω)2dω∫∞

0
S(ω)2dω

(8.35)

75Jacobsen and Nielsen (1987) made the distinction that the acoustic correlation function is bandlimited, whereas
the coherence is de�ned in the frequency domain.
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which, for narrowband modulated sources, we normally equate with the carrier ω̄ = ωc. With some
e�ort, it may be shown that ∆τ and ∆ω are related by the inequality (Mandel and Wolf, 1995, pp.
176�180)

∆τ∆ω ≥ 1

2
(8.36)

This expression is reminiscent of the uncertainty principle for time signals and their frequency rep-
resentation. The similarity is perhaps unsurprising, given the Fourier-transform pair that the au-
tocorrelation and the spectral density form (although in this case it was established for wide-sense
stationary random processes according to the Wiener-Khintchin theorem, unlike regular time sig-
nals). Just as for time signals, the inequality 8.36 becomes an equality only for a Gaussian source
distribution�both its spectrum and its autocorrelation (Gabor, 1946; Goodman, 2015, pp. 158�
162).

Even with the new de�nition of the coherence time of Eq. 8.33, it is somewhat arbitrary and
may be used primarily as an approximate measure. In reality, the visibility may oscillate around
∆τ , depending on the exact distribution of the spectrum around the mean frequency. Furthermore,
obtaining a meaningful interpretation of the coherence time when the source is not monochromatic
or narrowband is not straightforward, as both spectrum and self-coherence functions have multiple
peaks. This is the case in most realistic acoustic sources, which requires more ad-hoc estimates, as
is demonstrated in �A.

Given a �nite coherence time for the source, it is also possible to de�ne a corresponding coher-
ence length ∆l

∆l = c∆τ ∼ 2πc

∆ω
(8.37)

The coherence length is more intuitive in spatial coherence propagation problems and may therefore
be handier in binaural hearing. In contrast, the coherence time is more immediately relevant in
monaural listening, as will be explored below and throughout this work.

It will be useful to refer to the coherence time (or length) as a �gure of merit for the degree of
coherence of a source or a signal. So a signal with relatively high coherence time and length has a
high degree of coherence and vice versa.

8.2.5 The wave equation for the coherence functions

A profound property of the mutual coherence function is that it satis�es the wave equation (Wolf,
1955). This can be established relatively easily. Starting from the scalar wave equation for the
pressure �eld

∇2p(r, t) =
1

c2
∂2p(r, t)

∂t2
(8.38)

We can take the complex conjugate of p on both sides of the equation, switch to a local coordinate
system with r1 and t1, and multiply both sides of the equation by p(r2, t2)

∇2
1p

∗(r1, t1)p(r2, t2) =
1

c2
∂2p∗(r1, t1)

∂t21
p(r2, t2) (8.39)

where ∇1 is the Laplacian in local coordinates. Now if we take the ensemble average of both sides
and interchange the order of integration and di�erentiation

∇2
1⟨p∗(r1, t1)p(r2, t2)⟩t =

1

c2
∂2

∂t21
⟨p∗(r1, t1)p(r2, t2)⟩t (8.40)
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Applying the wide-sense stationarity property, we can use the fact that τ = t1 − t2 and ∂2/∂t21 =
∂2/∂τ 2 and replace the ensemble average with the mutual coherence function

∇2
1Γ(r1, r2, τ) =

1

c2
∂2Γ(r1, r2, τ)

∂τ 2
(8.41)

Similarly,

∇2
2Γ(r1, r2, τ) =

1

c2
∂2Γ(r1, r2, τ)

∂τ 2
(8.42)

Therefore, the homogenous wave equation is satis�ed for Γ(r1, r2, τ), which indicates that the
coherence function, while being an average quantity, propagates in space deterministically and is an
inherent property of the scalar pressure �eld. Coherence propagation according to the wave equation
is derived for di�erent types of �elds, including inhomogeneous ones with a primary radiating source
(Mandel and Wolf, 1995, pp. 181�196). To the best knowledge of the author, the above equations
have not been discussed with respect to acoustic �elds, except in speci�c underwater acoustic
problems (McCoy and Beran, 1976; Berman and McCoy, 1986).

Finally, it is possible to Fourier-transform both sides of Eqs. 8.41 and 8.42 using the Wiener-
Khintchin theorem (Eq. 8.27) and obtain the corresponding Helmholtz wave equations for the
cross-spectral density W (r1, r2, ω)

∇2
1W (r1, r2, ω) + k2W (r1, r2, ω) = 0 (8.43)

∇2
2W (r1, r2, ω) + k2W (r1, r2, ω) = 0 (8.44)

where we changed the order of di�erentiation and Fourier-transform integration in the two equations
and used the wavenumber de�nition k = ω/c.

8.2.6 Spectral coherence

A relatively late development in optical coherence theory has been the introduction of a rigorous
derivation of coherence in the spatial-spectral domain (Wolf, 1982, 1986). It bridges the gap with
the coherence functions used in signal processing and acoustics. One important insight that this
theory is able to provide is in accounting for the e�ect of passive narrowband �lters on coherence.
Importantly, this theory is the basis for what appears to be the most rigorous extension to date of
optical coherence theory to nonstationary processes (Lajunen et al., 2005), which is most relevant to
acoustics and hearing. Dispersive propagation also requires nonstationary coherence theory (Lancis
et al., 2005), as does non-periodic frequency modulation in general.

The following is a non-rigorous sketch of the main steps of derivation of the spectral coherence
expressions, primarily based on Wolf (2007, pp. 60�69). The initial steps are particularly technical,
but they lead to familiar and intuitive results. The full derivation is found in Wolf (1982, 1986)
and Mandel and Wolf (1995, pp. 213�223), which is more rigorously approached than an initial
derivation of the theory that appeared in Mandel and Wolf (1976). An alternative way of derive
spectral coherence was outlined by Bastiaans (1977), but is not reviewed here.

The main obstacle in formulating a spectral-coherence theory in the �rst place is that stationary
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random processes do not have a valid Fourier representation of the time signal p(t)76. Thus,

P (ω) =

∫ ∞

−∞
p(t)e−iωtdt (8.45)

does not exist for stationary random processes, because p(t) is not integrable as it does not converge
to zero when t → ±∞. This means that the spectrum in its ordinary de�nition as a function of
the ensemble average of the squared modulus of the Fourier transform of p(t) does not formally
exist either. The solution to this problem harnesses the existence of a more general de�nition
of the spectrum found in generalized harmonic analysis (Wiener, 1930), which is based on the
autocorrelation function of p(t). In order to apply it, Wolf (1982) used very general assumptions
about the source �eld�that Γ(r1, r2, τ) is absolutely integrable with respect to τ and that it is
continuous and bounded in the domain Ω that contains the source and the relevant points, for all τ .
He showed that these assumptions can lead to certain basic conditions on the cross-spectral density
that can make it suitable to be a kernel of the Fredholm integral equation77∫

Ω

W (r1, r2, ω)Ψn(r1, ω)d
3r1 = λn(ω)Ψn(r2, ω) (8.46)

where W (r1, r2, ω) is a matrix of the cross-spectral density, Ψn(r, ω) are eigenfunctions with cor-
responding positive eigenvalues λn(ω) ≥ 0, which are solutions to the Fredholm integral equation.
A complete solution for the equation can be expressed as a sum of all the eigenfunctions that solve
the equation

W (r1, r2, ω) =
∑
n

λn(ω)Ψ
∗
n(r1, ω)Ψn(r2, ω) (8.47)

This sum is called the coherent-mode representation of the cross-spectral density function,
as each mode can be shown to be completely spatially coherent. It is a linear combination of
orthonormal coherent modes at frequency ω, whose orthonormality condition is given by∫

Ω

Ψ∗
n(r, ω)Ψm(r, ω)d

3r = δnm (8.48)

where δnm is the Kronecker delta that is 1 when n = m and 0 otherwise. Using this condition it
can be readily shown that each individual mode Ψn also satis�es the wave equations 8.43 and 8.44.

Let us now continue to construct functions that can form an ensemble from which a correlation
function of the cross-spectral density function can be derived. We construct a pressure-�eld function
using the superposition of the modes Ψn

P (r, ω) =
∑
n

bn(ω)Ψn(r, ω) (8.49)

where the random �nite coe�cients bn are related to the eigenvalues λn(ω) through

⟨b∗n(ω)bm(ω)⟩ω = λn(ω)δnm (8.50)

76We have dispensed with the formal discussion of harmonizable random processes due to Loève that is usually
invoked here and may be relevant to the discussion of the analytic signal (�6). In general, it deals with nonstationary
random processes with in�nite energy that may also be discontinuous, for which the standard Fourier transform
does not exist�only the power spectrum via the autocorrelation function (see �8.2.3). Instead, it then applies the
Riemann-Stieltjes integral for the spectral density, x′(t) = 1

2π

∫
dX(ω)eiωt. For further details, see Clark (2012, pp.

173�178) for a friendly and brief introduction, or for a more complete treatment Napolitano (2012).
77The conditions are that the cross-spectral matrix W (r1, r2, ω) is non-negative, de�nite, and Hermitian. These

conditions make it suitable for expansion into eigenfunctions (Eq. 8.47) according to Mercer's theorem. In this case,
the modes satisfy the Fredholm equation (8.46) for which W is the kernel.
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Then, we can solve for the corresponding cross-correlation function

⟨P ∗(r1, ω)P (r2, ω)⟩ω =
∑
n

∑
m

⟨b∗n(ω)bm(ω)⟩ωΨ∗
n(r1, ω)Ψm(r2, ω) =

∑
n

λn(ω)Ψ
∗
n(r1, ω)Ψn(r2, ω)

= W (r1, r2, ω) (8.51)

where the order of ensemble-averaging and summation was interchanged in the �rst equality, Eq. 8.50
was used in the second equality, and Eq. 8.47 in the last equality that established equivalence with
the cross-spectral density. With these relations at hand it is now possible to derive a corresponding
expression for the spectrum

S(r, ω) = ⟨P ∗(r, ω)P (r, ω)⟩ω (8.52)

This formula is intuitively appealing because it has the same form of the naive interpretation of
the spectrum as the squared modulus of the Fourier transform components of the �eld function.
Instead, it is the ensemble average of its monochromatic eigenfunction representation, rather than
of the direct (forbidden) Fourier transform of the stationary �eld.

Now, since P (r, ω) is a linear combination of the eigenfunctions Ψm(r, ω) (Eq. 8.49), each of
which satis�es the wave equation, then P (r, ω) itself satis�es it too,

∇2P (r, ω) + k2P (r, ω) = 0 (8.53)

The interpretation of this version of the wave equation is that P (r, ω) is the spatial part of the
pressure �eld that has a simple harmonic (monochromatic) dependence p(r, t) = P (r, ω)eiωt. It
emphasizes the fact that all eigenfunctions in P (r, ω) are at the same frequency and each one may
be coherent in its own right. However, if the sum of P (r, ω) (Eq. 8.49) contains more than a single
mode, then the ensemble may be only partially coherent.

8.2.7 Broadband interference with spectral coherence

It is now possible to derive analogous expressions for the interference setup described in �8.2.1 and
Figure 8.1, but in terms of the cross-spectral density rather than intensity. The derivation follows
Wolf (2007, pp. 63�66). For an alternative proof, see also Born et al. (2003, pp. 585�588).

The frequency-dependent pressure �eld at point r is the sum of the contributions of the pressure
from points r1 and r2,

P (r, ω) = a1P (r1, ω)e
ikr1 + a2P (r2, ω)e

ikr2 (8.54)

with a1 and a2 being the complex amplitudes of the waves traveling from r1 and r2 to r, respectively.
Using the expression for S(r, ω) in Eq. 8.52, let us write the spectral density in r

S(r, ω) = |a1|2S(r1, ω) + |a2|2S(r2, ω) + 2Re
[
a∗1a2W (r1, r2, ω)e

−iδ
]

(8.55)

where δ = ω|r1 − r2|/λ is once again the phase associated with the path di�erence, λ is the
wavelength, and the interference is now expressed by the cross-spectral density W (r1, r2, ω). The
�rst two terms in Eq. 8.55 are the contribution to the spectral density in r when one of the sources
is switched o�, so

|a1|2S(r1, ω) = S1(r, ω) |a2|2S(r2, ω) = S2(r, ω) (8.56)

The spectral degree of coherence µ(r1, r2, ω) is de�ned as

µ(r1, r2, ω) =
W (r1, r2, ω)√

W (r1, r1, ω)W (r2, r2, ω)
=

W (r1, r2, ω)√
S(r1, ω)S(r2, ω)

(8.57)
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We also set
µ(r1, r2, ω) = |µ(r1, r2, ω)|eiα(r1,r2,ω) (8.58)

with α(r1, r2, ω) = arg µ(r1, r2, ω). Hence, we can rewrite Eq. 8.55 as

S(r, ω) = S1(r, ω) + S2(r, ω) + 2
√
S1(r, ω)S2(r, ω)|µ(r1, r2, ω)| cos [α(r1, r2, ω)− δ] (8.59)

This is the spectral interference law. Just as with the complex degree of coherence in the
temporal-spatial coherence treatment earlier, it can be shown that the spectral degree of coherence
µ is bounded |µ(r1, r2, ω)| ≤ 1, where 1 indicates complete coherence, and 0 complete incoherence
(Born et al., 2003, p. 911). Unlike the temporal degree of coherence, the spectral degree of
coherence is de�ned for a single frequency component. In general, this quantity is suitable for
broadband measurements and can reveal spectral e�ects that have relatively small intensity changes
per frequency. In contrast, temporal-spatial coherence is applicable for narrowband signals, where
intensity e�ects are visible, with few spectral e�ects.

Interestingly, µ(r1, r2, ω) is none other that the coherence function that is commonly used in
acoustics and signal processing (e.g., Shin and Hammond, 2008, pp. 284�285), only backed by
physical conditions that correspond to the familiar interference experiment.

When the power contributions from the two points are equal, S(r1, ω) = S(r2, ω), the spectral
interference law simpli�es to

S(r, ω) = 2S1(r, ω) {1 + |µ(r1, r2, ω)| cos [α(r1, r2, ω)− δ]} (8.60)

which assumes the form of sinusoidal modulation envelope as a function of position when two sources
interfere. It also implies that, in general, the superposed spectrum of the two contributions to the
�eld is di�erent than the spectrum of a single one. Unlike the interference with narrowband sounds
that was analyzed using temporal coherence, spectral modulation is not sensitive to the distance
from the source in the same way, and �uctuations in the spectrum may be observed well beyond
the coherence time and length of the source. In some conditions, this can potentially give rise
to one-half of spectrotemporal modulation that has been studied with broadband acoustic stimuli
(Aertsen et al., 1980b,a; Aertsen and Johannesma, 1981), primarily with respect to their cortical
responses (see also �2.4.3 and �3.4.4).

8.2.8 Narrowband �ltering and coherence

Before leaving the realm of stationary coherence, let us also explore the e�ect of linear narrowband
�ltering on the broadband spectral coherence function (Wolf, 1983, Wolf, 2007, pp. 73�76 and
Mandel and Wolf, 1995, pp. 174�176). This problem is particularly relevant in hearing, because of
the cochlear bandpass �ltering property�albeit nonlinear in its transient response�which a�ects
the received coherence of the auditory signal.

The output cross-spectral density functionWo of the input pressure �eld P , which passes through
a bandpass �lter that has a transfer function H(ω), is

Wo(r1, r2, ω) = ⟨H∗(ω)P ∗(r1, ω)H(ω)P (r2, ω)⟩ω = |H(ω)|2⟨P ∗(r1, ω)P (r2, ω)⟩t
= |H(ω)|2Wi(r1, r2, ω) (8.61)

where Wi is the cross-spectral density function before the �lter, at the input. In the second equality,
H(ω) was taken out of the ensemble average because it is deterministic. It results in the familiar
input-output relation of the linear �lter, with the cross-spectral density function assuming the role
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of the signal. It is then straightforward to show that the spectral degree of coherence is una�ected
by the �lter. At the input it is

µi(r1, r2, ω) =
Wi(r1, r2, ω)√

Wi(r1, r1, ω)Wi(r2, r2, ω)
(8.62)

And at the output

µo(r1, r2, ω) =
Wo(r1, r2, ω)√

Wo(r1, r1, ω)Wo(r2, r2, ω)

=
|H(ω)|2Wi(r1, r2, ω)√

|H(ω)|2Wi(r1, r1, ω)|H(ω)|2Wi(r2, r2, ω)
= µi(r1, r2, ω) (8.63)

Moving now to the spatial-temporal complex degree of coherence γ(r1, r2, τ), we repeat Eq. 8.9
using the self-coherence functions in the denominator:

γ(r1, r2, τ) =
Γ(r1, r2, τ)√

Γ(r2, r2, 0)
√
Γ(r2, r2, 0)

(8.64)

We would like to �nd out whether γ(r1, r2, τ) is a�ected by the �lter, unlike µ(r1, r2, ω). It
is possible to use the Wiener-Khintchin theorem and express the cross-correlations as the inverse
Fourier transform of the cross-spectral density (Eq. 8.28), so at the input to the �lter we get

Γi(r1, r2, τ) =
1

2π

∫ ∞

0

Wi(r1, r2, ω)e
iωτdω (8.65)

whereas at the output it is

Γo(r1, r2, τ) =
1

2π

∫ ∞

0

Wo(r1, r2, ω)e
iωτdω =

1

2π

∫ ∞

0

|H(ω)|2Wi(r1, r2, ω)e
iωτdω

≈ 1

2π
Wi(r1, r2, ωc)

∫ ∞

0

|H(ω)|2eiωτdω (8.66)

where the �nal approximation used was done by assuming that the cross-spectral density is about
constant across the narrow �lter bandwidth, so it could be taken out of the integral. Generalizing
across the two positions of r

Γo(rm, rn, τ) ≈
1

2π
Wi(rm, rn, ωc)

∫ ∞

0

|H(ω)|2eiωτdω m, n = 1, 2 (8.67)

Therefore, the complex degree of coherence is

γo(r1, r2, τ) ≈
Wi(r1, r2, ωc)

∫∞
0

|H(ω)|2eiωτdω√
W1(r1, r1, ωc)W2(r2, r2, ωc)

∫∞
0

|H(ω)|2dω
= µi(r1, r2, ωc)

∫∞
0

|H(ω)|2eiωτdω∫∞
0

|H(ω)|2dω
(8.68)

where we used Eqs. 8.64, 8.66, and 8.67. The integral of Eq. 8.68 can be simpli�ed by inspecting
the value of γo(r1, r2, τ) around τ = 0. The quotient is the normalized Fourier transform of
|H(ω)|2�essentially the normalized impulse response function of the �lter, measured for intensity,
and assuming that the �lter is linear. This gives us a maximum at τ = τ0 ≥ 0, for a causal �lter,
so that

γo(r1, r2, τ) ≤ γo(r1, r2, τ0) = µi(r1, r2, ωc) (8.69)
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This result mirrors the narrowband nature of the coherence function γo(r1, r2, τ). It predicts that
the temporal degree of coherence is not guaranteed to remain the same given the narrowband
�ltering. Even for very narrow bandwidths it may well be less than unity. But we can obtain further
insight than that, by testing the e�ect of the bandwidth of an ideal rectangular bandpass �lter on
the coherence function. If we set

|Hr(ω)|2 = 1 ωc −
∆ω

2
≤ ω ≤ ωc +

∆ω

2
(8.70)

for a �lter with bandwidth ∆ω. Then we can directly compute Eq. 8.68, which gives

γo(r1, r2, τ) ≈ µi(r1, r2, ωc)∆ωe
iωcτ sinc (∆ωτ) (8.71)

where µi(r1, r2, ωc) has the dimensions of spectral density, so it cancels out the scaling by ∆ω. The
main lobe of the sinc function becomes narrower with increasing �lter bandwidth. We remember
that the coherence time of a narrowband source is inversely proportional to its bandwidth (Eq.
8.31). Here we showed how the narrowband �ltering can e�ectively turn a broadband source into a
narrowband one when the bandwidth is narrow enough, which results in an increase of the coherence
time. This would make a broadband source appear more coherent than it is at the origin. This is
an important result that we will revisit throughout this work. See also Jacobsen and Nielsen (1987)
for an alternative derivation.

8.2.9 Nonstationary coherence

Coherence theory as has been formulated until recently is largely based on the theory of random
stationary processes. Even though it has proven to have a tremendous explanatory power in optics
and is just as applicable in other scalar wave phenomena, it is inadequate to deal with realistic acous-
tic signals that are, by and large, nonstationary. The importance of nonstationarity was expressed
by Antoni (2009) in the context of cyclostationary acoustic signal analysis, which reveals hidden
periodicities (modulations) in the standard power spectrum: �Let us insist on the assertion that
nonstationarity�as evidenced by the presence of transients�is intimately related to the concept of
information. This is completely analogous to speech or music signals that can carry a message or a
melody only because they consist of a succession of nonstationarities.�

Formal work on nonstationary optical coherence theory started only relatively recently with
Bertolotti et al. (1995). We shall adopt a similar but more rigorous theory by Lajunen et al.
(2005), which is a close variation on the spectral coherence theory presented in �8.2.6. Therefore,
it is not going to be necessary to consider all the steps in the derivation, but rather to discuss the
main di�erences and implications.

Nonstationary coherence theory is de�ned for a pulse train, in which the pulses are well-separated
in time from one another, so they do not mix. Pulses here should be seen as a very general way to
express a �nite wave that has a beginning and an ending, although its duration is not constrained
by the analysis. The pulses can be di�erent from one another in level, spectrum, position, and
duration, which means that the ensemble is certainly not ergodic. Hence, nonstationary ensemble
averages that are employed here are not time averages as before, but have to be computed on a
pulse-by-pulse basis, where every pulse is de�ned with its own time reference�independently of the
other pulses. Therefore, the expression for the mutual coherence function takes the form

Γ(r1, r2, t1, t2) = ⟨p∗(r1, t1)p(r2, t2)⟩ =
1

N

N∑
n=1

p∗n(r1, t1)pn(r2, t2) (8.72)
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where the pressure �eld p of each pulse is marked with a subscript n. Because of the nonstationarity
of the pulse train, the cross-correlation is not time-invariant, in general, which is underscored by
the ensemble averaging operation ⟨· · · ⟩ not carrying the subscript t this time. The nonstationary
complex degree of coherence is (Bertolotti et al., 1995)

γ(r1, r2, t1, t2) =
Γ(r1, r2, t1, t2)√
I(r1, t1)

√
I(r2, t2)

(8.73)

Similarly, the nonstationary cross-spectral density is

W (r1, r2, ω1, ω2) = ⟨P ∗(r1, ω1)P (r2, ω2)⟩ =
1

N

N∑
n=1

P ∗
n(r1, ω1)Pn(r2, ω2) (8.74)

Here the most striking feature of the nonstationary theory is revealed, as disturbances of di�erent
frequencies can interact�unlike in the stationary case where di�erent frequencies are completely
incoherent. The nonstationary spectral degree of coherence is then

µ(r1, r2, ω1, ω2) =
W (r1, r2, ω1, ω2)√
S(r1, ω1)

√
S(r2, ω2)

(8.75)

All steps and expressions in the derivation are completely analogous to the stationary case as de-
scribed in 8.2.6, but with the frequency variables di�erentiated ω1 ̸= ω2 everywhere where cross-
correlation is applied. Notably, the nonstationary mutual coherence and cross-spectral density both
satisfy the wave equation, just like Eqs. 8.41, 8.42, 8.43, and 8.44.

The option of using time-dependent ensemble averages instead of mutual coherence was men-
tioned in Mandel and Wolf (1965), where it was referred to as the ensemble correlation function.
It was not further pursued there, because of the greater usefulness of stationarity. Derode and Fink
(1994) suggested, independently, to use this alternative averaging in acoustical nonstationary sig-
nals, anticipating the nonstationary optical theory. However, their acoustic coherence theory did
not consider frequency interaction in its spectral coherence functions. Nonstationary acoustic signal
theory was also derived by Mark (1970), but without considering an interaction between frequencies
either, so ω1 = ω2, just as in stationary processes. The coherence between of two frequencies
that propagate in turbulent conditions was investigated by Havelock et al. (1998), but the analysis
referred to an envelope-like �uctuation term that is common to the two frequencies and becomes
gradually decohered with increasing turbulence strength and range, for �xed points in time and
space. This usage is more similar to the de�nition of coherence in hearing science (�7.2.4).

In general, nonstationary processes are much more complicated to work with than stationary
processes. As a rule, since the frequency components are not independent in nonstationary processes,
it is possible that the usual self-coherence function does not fully capture its second-order statistical
properties as in stationary processes (e.g., the spectrum and the coherence time). This can result
in analytic signals that are not �proper�, which means that their real and imaginary parts are
not independent and their cross-correlation does not cancel out as Eq. 6.14 predicts (Neeser and
Massey, 1993; Picinbono, 1994). It has been suggested that realistic signals such as speech are
improper, which may require di�erent applied tools to deal with them (Picinbono and Bondon,
1997; Schreier and Scharf, 2003; Clark, 2012). It was recently suggested by Clark (2012) that
phase-locked coherent tracking (using the complex envelope formalism) may go a long way to
accurately demodulate improper signals (i.e., obtain accurate audio and modulation spectra), which
coincides with what the ear appears to be doing, at least in part (�9). While this topic has some clear
relevance to the present theory, as both deal with the borderline between constant and instantaneous
quantities, this approach is outside the scope of this work.
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Beating

An early example of nonstationary interference has been the demonstration of the beating between
two laser sources that have nearly identical line frequencies (Magyar and Mandel, 1963). This
would have not been considered a particularly interesting achievement in acoustics, but the analysis
provides a useful formulation to beating using coherence theory. In this case, the ensemble average
was not employed, because it would have e�ectively randomized the initial phase, which in the long
run eliminates the contrast of any measurable beating. The spatial coordinate is assumed constant
in all expressions, so it is incorporated into the phase

p1(t) =
√
I1(t) exp(iω1t+ iφ1) p2(t) =

√
I2(t) exp(iω2t+ iφ2) (8.76)

with the initial phase terms φ1 and φ2. In general, there is a di�erent initial phase, as well as a
possible path di�erence cτ between the wavefronts that corresponds to a delay τ . We can write the
interference law for the �elds p1(t− τ/2) and p2(t+ τ/2) using all the phase contributions

I(t) = I1(t) + I2(t) + 2
√
I1(t)I2(t) cos

[
(ω2 − ω1)t+

1

2
(ω2 + ω1)τ + φ2 − φ1

]
(8.77)

The intensity will vary in time as long as ω1 ̸= ω2. This beating can be thought of as temporal
fringes given that mathematically there is no di�erence with spatial interference except for the
changed space-time coordinate. Assuming a detector that has a rectangular input window T , we
can integrate the intensity and obtain the detected beating

Î(t, T ) =
1

T

∫ t+T

t

I(t′)dt′

= I1(t)+I2(t)+2
√
I1(t)I2(t) sinc

[
(ω1 − ω2)T

2

]
cos

[
(ω2 − ω1)

(
t+

T

2

)
+

1

2
(ω2 + ω1)τ + φ2 − φ1

]
(8.78)

Based on Eq. 8.19 we obtain the visibility pattern, which is stationary in comparison with the
time-dependent cosine term

|γ(t)| = 2√
I1(t)
I2(t)

+
√

I2(t)
I1(t)

sinc(π∆fT ) (8.79)

for spacing between the frequencies of ∆f = |f2 − f1|. By exchanging audibility for visibility, this
equation provides a condition for beating detection. However, the rectangular integration window
causes the audibility to �uctuate with the ∆f due to the side lobes of the sinc function, which is
psychoacoustically not the case. Rather, the beating audibility should diminish monotonically with
∆f . Therefore, the rectangular window may be replaced with a Gaussian window that has the same
equivalent rectangular bandwidth T (see �B.3)

Î(t, T ) =
1

T

∫ ∞

−∞
I(t′) exp

(
−4 ln 2

t
′2

T 2

)
dt′

= I1(t) + I2(t) +

√
π

ln 2

√
I1(t)I2(t) exp

[
−(πT∆f)2

4 ln 2

]
cos

[
1

2
(ω2 + ω1)τ + φ2 − φ1

]
(8.80)

with the respective visibility/audibility

|γ(t)| =
√

π
ln 2√

I1(t)
I2(t)

+
√

I1(t)
I2(t)

exp

[
−(πT∆f)2

4 ln 2

]
(8.81)



154 8.3. Coherence of typical acoustic sources

For a given T of the detector and for I1 = I2, the audibility with the Gaussian window will drop to
half for ∆f = 2 ln 2

πT
≈ 0.441/T , whereas with the rectangular window, it is ∆f = 0.5/T (the �rst

zero of the sinc function). We shall revisit this solution in �12.5.5, once the values of the auditory
T will be estimated.

The phase of the degree of coherence depends on the values of φ1, φ2 and τ , which are not
necessarily controlled. It means that had we taken the ensemble average, the temporal interference
pattern�the beating�may no longer be audible, as the relative position of the temporal fringes
would move with the phase. Therefore, in order to measure beating, we have to look at the speci�c
instance in time, as nonstationarity requires.

8.2.10 Discussion

The classical theory of coherence was reviewed with emphasis on the most relevant aspects to audi-
tory processing of acoustic signals. Although many of the theoretical results have been undoubtedly
known and used by acousticians, there is an obvious lack of systematic treatments or reviews of
this important topic within the �eld. It is appreciated that some of the results are imprecise in
the near-�eld approximation, where the sound intensity is directional and evanescent modes can be
dominant. Nevertheless, the squared pressure is the most useful proxy for acoustic intensity and
power in the majority of practical cases. It is also the most immediate measurement when using
pressure detectors such as the ears and standard pressure microphones. This makes the classical
coherence theory highly relevant for hearing research as well.

The remainder of this chapter is therefore dedicated to the exploration of how coherence theory
has been applied in hearing-relevant acoustics, sometimes using di�erent terminology than in optics.
In turn, the insight garnered in these sections will provide the necessary basis for understanding the
coherent-incoherent distinction that is key to the imaging auditory system.

8.3 Coherence of typical acoustic sources

8.3.1 Mathematical sounds and realistic light sources

It can be easy to forget that natural acoustic signals are not pure in the mathematical sense. In the
context of coherence, the in�nitesimal spectral width of the pure tone entails that, asymptotically,
it has in�nite coherence time and length. From the coherence time de�nitions (Eq. 8.31), the
coherence time for a mathematical pure tone is

∆τpure tone → ∞ (8.82)

whereas for white noise�the other mathematically idealized sound stimulus�it is

∆τwhite noise → 0 (8.83)

While somewhat trivial, these extreme cases are important because they map to many of the exper-
iments done in both acoustic and auditory research since the advent of electronics. In the present
work, these extreme coherence properties inform the interpretation of published results that were ob-
tained using such signals. Unlike signals of �nite bandwidth, broadening of pure tones (i.e., through
absorption, dispersion, re�ections, and the Doppler e�ect) accumulates very slowly, to the point
of being negligible in normal settings (see Figures 3.1 and 3.2 for illustrations using dispersion).
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This means that e�ects that have to do with partial coherence may not be readily encountered in
laboratory-based experiments and calculations based on pure tones.

In contrast to both pure tones and white noise, realistic optical sources have �nite bandwidths,
so they exhibit a broader range of coherence phenomena. Only with the invention of the laser (and
maser, both in the 1950s) did experimental optics obtain stable quasi-monochromatic sources, which
have much narrower spectral bandwidths than natural sources (yet still �nite)78. For example, Wolf
(2007, p. 5) compared the coherence time and length of a gas discharge lamp of ∆τ ≈ 0.01 µ s
and ∆l ≈ 19 m to a stabilized laser of ∆τ ≈ 100 µ s and ∆l ≈ 190 km(!). Note, however, that
these sources still have �nite bandwidths of ∆f ∼ 108 Hz for the lamp and ∆f ∼ 104 Hz for the
laser. While the exact center frequency was not provided by Wolf, we can roughly assume it to be
1014 Hz in both cases, which would make the relative bandwidth of the two sources 10−6 and 10−10,
respectively. While in optics these sources are still not considered pure tones�their phase cannot be
controlled as in sound generation�equivalent precision in audio would be very impressive. For a tone
at 1000 Hz, it would entail approximate precision of 0.001 Hz and 0.0000001 Hz, respectively�well
below the resolution of any standard acoustic instrumentation.

In the following, we will try to understand what kind of coherence properties may be expected
from realistic acoustic sources. Due to the relative scarcity of data in literature, this question can
be answered only in part.

8.3.2 E�ective duration of realistic acoustic sources

The coherence time of acoustic sources may be estimated directly from the autocorrelation function
of the radiated output in free �eld (Eq. 8.33). There is relatively little information available in
literature about the coherence properties of typical acoustic sources and most work has focused on
(broadband) music and the interaction it has with room acoustics (e.g., Ando, 1985). As most
natural acoustic sources are nonstationary, some kind of running autocorrelation is required to be
able to estimate their temporal coherence. In general, these sources are not at all as well-behaved
as the optical sources used in stationary coherence theory, and their coherence time can only be
estimated approximately. If the stationary autocorrelation function is computed using the limit

Γ(τ) = lim
T→∞

1

2T

∫ T

−T

p∗(t)p(t+ τ)dt (8.84)

Then, in the nonstationary case, the integration constant T is �nite and its value a�ects the mea-
surement. A longer T can be used to detect slower periodicities and features in the coherence
function. Examples of the e�ect of the choices of T on the autocorrelation function of several
musical pieces are shown in Figures 3.4�3.6 in Ando (1998, pp. 14�18) and for other sounds in
Figure A.2. These �gures demonstrate how signals di�er in their sensitivity to T , which may or may
not capture their characteristic coherence time. Therefore, T has to be selected with consideration
to the degree of coherence of the sound that is being analyzed.

In several acoustic studies that estimated the running autocorrelation, a measure similar to
coherence time�the e�ective duration (usually denoted with τe)�was de�ned as the -10 dB
drop from the autocorrelation peak at τ = 0 (i.e., when |γ| = 0.1), but extrapolated from the initial
5 dB drop in the response peak. This de�nition produces an exaggerated e�ect compared to the
coherence time in the optical de�nition that entails only a 3 dB drop from the peak (half-width
maximum power). As the procedure to obtain the 10 dB point normally involves a linear �t to the

78Before the advent of laser technology, the alternative in optics has been to use a monochromator, which
produces a narrowband spectrum from a broadband light source. This is usually achieved by spatially selecting the
di�racted or dispersed product of the broadband light. This technology is still widely used in applied optics.
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autocorrelation function of the A-weighted pressure (e.g., Ando, 1998, pp. 12�13), the conversion
entails that ∆τ ≈ 0.3τc, if the autocorrelation function is well-behaved. Di�erent methods exist to
estimate the running autocorrelation and the slope of its main peak, so the estimates of the e�ective
durations of acoustic sources tend to be somewhat inconsistent between reports and should be taken
only as approximate ranges (D'Orazio et al., 2011). This is also apparent from the supplementary
analyses presented in �A.

While the criterion for the e�ective duration de�nition seems to have been arbitrarily set, it
has been associated with some behavioral measures. Notably, identi�cation of monosyllables by
moderately hearing-impaired elderly listeners was highly correlated (r = 0.87) with the e�ective
duration of the syllables, but not with the broadband coherence time analog79 (r = 0.19) (Shimokura
et al., 2017, Figure 5d�5e). In another study, Ando (1998, pp. 88�119) found several correlations
between the preference of ideal reverberation time for speci�c music types and the e�ective duration
of the music. A �temporal factor� was also de�ned that is equivalent to coherence time of the
broadband autocorrelation, set at half the power of the main lobe, and was found to correlate with
the timbre perception of spectral tilt of distortion guitar (Ando and Cariani, 2009, pp. 11 and
120�124).

The e�ective duration�and more generally, the degree of coherence�of speech signals has not
been systematically surveyed in the literature, even though autocorrelation is frequently used in
signal processing of speech (e.g., for extracting the instantaneous fundamental frequency; Kawahara
et al., 1999 and De Cheveigné and Kawahara, 2002). While speech contains periodic or quasi-
periodic components�especially in vowels (see � 3.3.2)�it is highly nonstationary and dynamic,
and therefore cannot be expected to have very long e�ective duration on average, especially when
it is calculated for the broadband signal. According to D'Orazio and Garai (2017), speech has an
e�ective duration of somewhere between 8 and 16 ms. This estimate was probably based on Ando
(1998, Figure 4.2), who found a range of e�ective durations with an average of 12 ms (measured
with a Japanese poem spoken by a female reader). That even speech vowels are not completely
periodic can be seen in the autocorrelation curves in Hillenbrand (1988, Figure 2), which reveal large,
but nowhere near in�nite e�ective duration for a sustained /a/ vowel�about 10�20 pitch periods
for both real and synthesized male and female voices. Converted to time units, it can correspond
to a range of 50�200 ms for a male with fundamental frequency of f0 = 100 Hz at the low end,
or to f0 = 200 Hz for a female voice at the high end. A more detailed study of female Japanese
monosyllables found that the e�ective duration is 30�70 ms (Shimokura et al., 2017). An older study
with no speci�c details about the exact signal used reported male speech to have e�ective duration
of about 100 ms, but the autocorrelation curve never tapered o� below |γ| ≈ 0.15 (Fourdouiev,
1965, Figure 2 and table). Interpolation of the same curve gives a coherence time of about 31 ms
for speech.

More data has been collected about the coherence of musical sources than about speech sources.
For example, Ando (1998, pp. 13�19) compared the running autocorrelation of di�erent piano
performances and found a wide range of e�ective durations with a minimum of 20�30 ms (e.g.,
Ando's Figure 3.5d), along with instances of much longer durations (> 200 ms, Figure 3.4d),
depending on the integration time used in the calculation.

E�ective duration data of non-musical acoustic sources have been reported sporadically. For
example, autocorrelation measurements of narrowband noise centered around 250, 1000, and 4000
Hz with ∆f = 213, 554, and 1556 Hz, respectively, found coherence time (for |γ| = 0.5) that is
scaled by the noise bandwidth of about ∆τ = 3, 1.5, and 0.4 ms, respectively (Ando and Alrutz,
1982), as expected from the coherence time de�nition. In another study, the temporal characteristics

79In the paper the coherence time is referred to simply as the width of the autocorrelation peak and is notated
with Wϕ(0).
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Figure 8.4: The rough relative range of the e�ective duration of di�erent types of acoustic
signals and their impulsiveness. This is drawn according to D'Orazio and Garai (2017, Figures
4), with slight modi�cations.

of ground-level broadband noise from a landing airplane at 1 km altitude were estimated and found
to become incoherent very quickly (1�2 ms) (Fujii et al., 2001). However, there were additional
peaks in the autocorrelation function after the initial drop that represent spurious coherence due to
periodic components of the aircraft noise.

A qualitative breakdown of the coherence of various signal families was provided recently by
D'Orazio and Garai (2017, Figures 4 and 6), in which the relative e�ective duration of speech,
music, pure tones, which noise, impulses, ventilation sound, and �glitch� sounds were all plotted
against an impulsiveness scale (ranging between completely impulsive and completely continuous).
As many musical pieces contain sounds that are both continuous and periodic (e.g., harmony of a
string section) as well as impulsive sounds with very slow rhythmic periods (e.g, drum beat), its
e�ective durations occupies a large range of times (16�512 ms), depending on the musical content
and instrumentation. The �gure is roughly reproduced in Figure 8.4 with slight modi�cations.

8.3.3 Coherence time of realistic sources

Given the relative lack of narrowband coherence data in literature, several additional acoustic sources
were analyzed in �A. The results show the interactions between coherence and the spectral features
in the analyzed channel, the instantaneous tonality, and the type of source. Sources that have
sustained and resonant normal modes are more coherent than transient sources, including speech.
However, the variability is very large, and becomes even larger when it interacts with the room
acoustics.

One immediate observation is that coherence time values are long at lower frequencies and
are almost always very short at high frequencies (i.e., above 2000 Hz). This can be due to the
narrowband �ltering and the sources themselves. The analysis �lters impose some coherence on the
signals, which is proportional to the absolute bandwidth of the �lter, rather to its relative bandwidth
(Eqs. 8.31 and 8.71). Since �lter banks (including the cochlear one) tend to have a relatively small
variation in the relative bandwidth as a function of frequency, then high frequencies that are analyzed
by them will always be less coherent, by the de�nition of coherence time. Therefore, inasmuch as
the �lters themselves have a cohering e�ect on the signals, it decreases with frequency. Perhaps
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more importantly, the acoustic sources surveyed were musical and human sounds, which tend to be
well-tuned only at low frequencies. At high frequencies, their high modal density may preclude stable
narrowband sounds with the �lters used. As the survey of sources was anything but exhaustive, more
data will have to be analyzed in the future to enable a better grasp of these issues.

Audio demos are available for some of the samples used in the experiment, which may be
informative for the reader to get a handle of the di�erent coherence regimes�especially when heard
along with the various plots in �A.

8.3.4 Discussion

The combined data from literature and from �A are su�cient to give an idea about the ranges
of coherence times associated with di�erent sources. Importantly, they enable us to relate to a
continuum of coherence times, which may be indicative of the subjective perception of coherent,
partially coherent, and incoherent sources. As a rule, natural sources are rarely completely coherent
or completely incoherent, but sources with coherence time on the order of a couple of milliseconds
or less will be assumed incoherent, whereas those in the hundreds of milliseconds will be assumed
coherent. These bounds will demarcate the relevance of acoustic and auditory phenomena that can
be explained by interference.

A common theme in this chapter and the rest of this work is that realistic acoustic sources and
�elds are partially coherent. Now that we have the extreme bounds of coherent and incoherent
sources�what sounds could count as partially coherent? As was shown earlier (Eq. 8.21), partial
coherence can be expressed as a sum of completely coherent and completely incoherent contributions
that are weighted by |γ| and 1−|γ|, respectively. Furthermore, according to Eq. 8.22, |γ| = 0.5 when
the coherent and incoherent contributions are equal. For a purely temporal coherence measurement,
this equality is satis�ed exactly at the coherence time τ = ∆τ , namely, at the full-width half-
maximum of the coherence distribution.

As a rule of thumb we shall consider the completely coherent regime of a coherence function
to be contained within the coherence time interval |τ | ≥ ∆τ . Similarly, the completely incoherent
regime will be outside of the e�ective duration |τ | ≤ τe. The partially coherent regime is going to
be everything in the middle ∆τ ≤ |τ | ≤ τe, which leaves some room for ambiguity that may depend
on the individual responses and their interaction with the particular source.

Note that even though we have discussed the results based on autocorrelation (self-coherence),
it does not imply that such an operation is necessarily being performed within the auditory system�
something that has been questioned in literature (Loeb et al., 1983; Kaernbach and Demany, 1998).
Rather, autocorrelation here is the mathematical tool that reveals what kind of acoustic source is
being radiated. This information a�ects the receiver whether or not it has a physiological autocor-
relator. See �8.6 for further discussion about autocorrelation in the auditory system.

8.4 Decoherence through re�ections and reverberation

Out of all the branches of acoustics, room acoustics may have made the most extensive use of
stochastic tools that have parallels in scalar electromagnetic coherence theory (� 7.2.3). This is
because reverberation is most e�ectively described as an ensemble of re�ections with random phase,
whereas a complete solution of the wave equation for all room modes becomes untenable at high
frequencies, where the modal density of the room is prohibitively high. The fundamental e�ect of
reverberation on coherence is to gradually decohere the sounds through re�ections, spectral broad-
ening, and mixing with numerous other re�ections in the �eld. Therefore, the reverberant sound �eld
is usually divided into two limiting cases�the coherent/direct sound and the incoherent/re�ected
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sound (Morse and Bolt, 1944). The details matter, though, as the source type, boundary (room)
structure, and construction materials determine the extent of decoherence that is ultimately detected
by the ears. While the topic of room acoustics is too large to fully reframe in light of coherence
theory, several basic results will be reviewed below that will provide the foundation for later analysis
of the auditory system response to signals in their everyday environments.

8.4.1 Coherence and re�ections

A complete description of the pressure waves re�ected from a surface can be prohibitively complex
and only relatively simple cases can be solved analytically (see � 3.4.3). The coherence approach
avoids this di�culty by looking only at the relative point-to-point transformation of the wave function
and at its potential to cause interference, rather than at a complete description of the entire �eld.
This is particularly useful because any one-dimensional �eld function�fully describable as point
source and point receiver (as is the e�ective pressure �eld arriving in each ear)�may be fully
characterized by its instantaneous amplitude and phase (see �3.5).

Following the propagated �eld from a source with a known degree of coherence, we would like
to know how its radiated pressure changes as a result of re�ections. We can make a few inferences
based on � 3.4.3. In the simplest case, a hard wall of very large dimensions (with respect to the
longest wavelength of the sound �eld) acts as a perfect mirror. The pressure at any point in front of
the wall is a superposition of the direct sound and its re�ection from the wall. The time delay of the
re�ection that corresponds to τ in the coherence function γ(τ) is determined by the distance from
the wall, the angle of incidence, and the wall impedance. If τ is smaller than the coherence time
of the source, then the direct and re�ected sounds interfere and level variations will be measurable
around the point, embodying the interference fringes in the acoustic �eld. When the time delay is
not much larger than the coherence time, partial coherence leads to partial interference that exhibits
poor fringe visibility (measured in space). Finally, when the wall is not hard, then the re�ected wave
is generally attenuated and exhibits a frequency-dependent phase response, which can also lead to a
loss of coherence (if the source is not monochromatic), even when the associated time delay is well
below the coherence time. Partially coherent broadband sound that is mixed with its re�ection will
exhibit spectral ripples, or spectral modulation. Such ripples were observed in various geometrical
con�gurations, where the source was placed between two, three, or four re�ecting walls in Berman
(1975). Even though the source was coherent (pure tones), the spectrum was a�ected by the modes
that existed between the walls, which gave rise to a complex interference pattern that is seen in the
spectrum.

8.4.2 Coherence and reverberation

Reverberation is caused by the ensemble of re�ections between an acoustic source and its environ-
ment, which arrive to a receiver asynchronously. The re�ected waves are further re�ected between
surfaces until the re�ected energy eventually becomes fully dissipated and the sound dies out. The
delay associated with each discrete re�ection is determined by the distance from the source, angle
of incidence, and the surface impedance�summed over multiple re�ections. Reverberation can be
statistically characterized using its reverberation time, which is proportional to the duration of
the sound decay in the reverberant space. In its simplest formulation80, the reverberation time is a
function of the total surface area S , its relative absorption 0 ≤ α ≤ 1 (0 is completely absorbent, 1

80For a brief review of alternatives and limitations see Xiang (2020).
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completely re�ective), and the volume V of the space�through Sabine's formula (Sabine, 1923):

T60 = 6 ln 10 · 4V

cSα
(8.85)

Technically, it is de�ned as the time it takes for stationary sound to drop by 60 dB (to one millionth
of its original level) from when it is switched o�. Nowadays, it is usually evaluated directly from
the impulse response function of the space. Although reverberation has been explored mainly inside
built rooms, its applicability is completely general to other spaces with enough re�ective surfaces
to elicit statistical behavior (see �3.4.4). Therefore, the reference to rooms provides a convenient
system that is also relevant to much of humanity, but many of the conclusions most certainly go
beyond built enclosures.

The validity of the statistical approach to reverberation largely depends on how random the
sound �eld is�a property which is captured by the di�use �eld model. The di�use �eld has
been a highly useful theoretical model for investigating the e�ects of reverberation. In a perfectly
di�use �eld, the number of re�ections, their phase, and their direction are completely random (the
quantities are average, so the randomness is evaluated over time) and behave ergodically (Morse
and Bolt, 1944). Jacobsen (1979, p. 12, de�nition II with interpretation B) explored several related
de�nitions for a di�use �eld in a reverberation chamber and zeroed in on: �A di�use sound �eld
comprises an in�nite number of plane propagating waves with random phase relations, arriving from
uniformly distributed directions.� And additionally, �At an arbitrary position in a pure-tone �eld the
phase relations of the waves constitute a �xed set of random variables.� These somewhat technical
de�nitions have been mainly used with spectral coherence, although it was developed independently
from that reviewed in �8.2.7.

A room that approximates a di�use �eld is called a reverberation chamber. It is notionally
antonymous to the anechoic chamber, whose design goal is to approximate free-�eld behavior
that renders exclusive the direct sound from the acoustical source by minimizing re�ections through
heavy absorption (Kuttru�, 2017, pp. 151�154 and 221�225). In interpreting experimental acoustic
data, it is perhaps handy to consider the following analogies. The di�use �eld is to spatial
coherence what white noise is to temporal coherence�both approach the limit of complete
incoherence with in�nitesimally small spatial or temporal shifts in their respective self-coherence
functions. Similarly, the free �eld is to spatial coherence what the pure tone is to temporal
coherence�both approach the limit of complete coherence with in�nitesimally large spatial and
temporal shifts in their respective self-coherence functions. As always, reality lies somewhere in
between these idealized model �elds, as Morse and Bolt (1944) admitted that � ...room acoustics
�nds itself in the di�cult intermediate region,� referring to the gulf between statistical modeling
of rooms using geometrical acoustics and accurate modeling with wave acoustics that is often
impractical. In a similar vein, Kinsler et al. (1999, p. 140) commented on the di�erence between
coherent and incoherent summation of a monochromatic source: �A typical case of continuous wave
propagation may lie somewhere between these two idealizations. Coherence is favored by short-
range, low-frequency, smooth boundaries, few boundary re�ections, and a stable and smooth speed
of sound pro�le. Random phasing is favored by the converse conditions.�

It becomes valid to model an acoustic �eld as di�use where the enclosure supports a high modal
density with respect to frequency. This is the case for large rooms, as is expressed by the Schroeder
cross-over frequency (Schroeder, 1996)

f ≈ 2000

√
T60
V

Hz (8.86)

for T60 measured in s and V in m3. This formula guarantees that frequencies above f resonate
due to at least three normal room modes, on average�so no normal mode �isolates� are allowed.
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Below the cross-over frequency, single modes may dominate the response, which is no longer well-
described by statistical considerations. By inverting Eq. 8.86 and turning it into an inequality, we can
relate to �large rooms� with an approximate di�use �eld if they have a volume V > T60(2000/f)

2

(Kuttru�, 2017, p. 68). In contrast, �small rooms� may not have a meaningful T60 associated with
them, because individual normal modes occupy signi�cant bandwidths. However, T60 is generally
dependent on frequency, so its blanket application in all these formulas requires caution.

Despite its power as a theoretical tool, the di�use �eld approximation is often violated in real
rooms and should only serve as a limiting case (Morse and Bolt, 1944; Waterhouse, 1968). There
are correlations in the di�use sound �eld that demonstrate the limits of its randomness, which
therefore induce extended coherence volumes than theory predicts81. For example, Waterhouse
(1955) showed both theoretically and empirically that interference is observable along the room
boundaries even in a highly reverberant chamber. The interference is constructive close to the
boundary with the strongest e�ect for a corner, followed by an edge, and �nally a wall that has the
weakest e�ect. Naturally, the interference is most pronounced for coherent sources, as pure tone
fringes are measurable up to a distance of a couple of wavelengths from the walls. With broadband
noise, the e�ect decreases with increasing bandwidth, as its coherence length drops (see Eq. 8.37;
Waterhouse, 1955, Figure 7). Even far away from the room boundaries, the spatial coherence of
the di�use broadband pressure �eld at two points is �nite. Thus, an interference pattern can be
observed, especially at low frequencies, given by the spatial coherence

µ(r1, r2, ω) = sinc

(
ω|r1 − r2|

c

)
(8.87)

where r1 and r2 are the two measurement points (Cook et al., 1955). This formula was found to be
correct also in rectangular rooms as long as the reverberant �eld is undamped, modal eigenfrequencies
are unique, and the modal density is high enough to be approximated as continuous (Morrow, 1971).

Just as correlations exist in the temporal and spatial domains, they also characterize the spectral
domain in the di�use �eld. Sound components in the spectral domain are not entirely incoherent
in large reverberant rooms. Schroeder (1962) showed that if the frequency response between two
points is modeled as a random process, then the autocorrelation of the power spectrum (de�ned as
a function of spectral distance |ω1 − ω2|), goes as

µ(r, ω1, ω2) =
1

1 +
(

|ω1−ω2|T60

13.8

)2 (8.88)

which we associated with the spectral nonstationary self-coherence function µ. The factor T60/13.8
represents the time it takes for an impulse to decay to a value of 1/e from its initial value. The
autocorrelation drops by about 10 dB for |f1− f2| = 6.6/T60, so that it takes the frequency spacing
of a few Hertz for two components to become completely incoherent. A very similar result was
obtained for the pressure amplitude autocorrelation function. Eq. 8.88 is a neat illustration of
the decohering e�ect of reverberation�the longer the reverberation time is, the more decorrelated
adjacent spectral components become, as the �eld becomes closer to a theoretically stationary �eld
in which frequencies are incoherent (Eq. 8.30). However, caution must be taken when the spectral
resolution of the measurement is higher than the spacing condition for incoherence, because the
measurement �lter can make the coherence appear higher than it is in reality (Jacobsen and Nielsen,
1987; Jacobsen and Roisin, 2000). Some examples of spectral coherence at di�erent measurement

81The coherence volume is de�ned as an extension to coherence length in three dimensions, as the volume
around a point in which interference may be observed (Wolf, 2007, pp. 8�10). The concept is not used in acoustics,
but seems appropriate in the context of three-dimensional �elds.
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points in a room are given in �A.6.3, where it is shown that realistic sources can be much more
spectrally correlated in standard (non-di�use) rooms than is predicted by Eq. 8.88.

At the sound receiver in the reverberant space, three coherence regimes may be noticeable�two
distinct and one that is more elusive. First, the direct sound from the source arrives uninterrupted to
the receiver before the �rst re�ection does. When the source is coherent, then its mutual coherence
function is largely retained in this duration, as it propagates according to the wave equation (Eqs.
8.41 and 8.42) and does not su�er from the decohering e�ects of re�ection (8.4.1). Second, if
a certain surface is much closer to the receiver than other surfaces, then a single re�ection may
interfere with the direct sound, if the direct sound and re�ection are both coherent. Additional
�early re�ections� are possible over a short time window that produce some interference, depending
on the surrounding geometry82. Third, late re�ections are no longer distinct and they arrive with
random phases, which add incoherently in intensity without interfering. The �rst and third regimes
can be distinguished by noting that the power of the reverberant �eld is independent of position
and constitutes a constant fraction of the source power. Thus, a room may be characterized by
the distance in which the direct and reverberant powers are equal�the critical distance or the
di�use-�eld distance (Kuttru�, 2017, p. 118)

rc ≈ 0.1

√
V

πT60
(8.89)

The separation between the early and late re�ection regimes may not be clear-cut. Rarely, a distant
and high-level re�ection can stick out as an echo that is a distinct coherent re�ection within the
incoherent reverberant tail. A more common coherent e�ect may be a series of regular re�ections
that are caused by structural geometrical regularities such as parallel walls or spherical domes, which
can give rise to �utter echo and/or coloration. These are modulation e�ects, which are imposed as
peaks in the coherence function (either spectral or temporal) of the sound pressure in the room (see
�3.4.4).

The various e�ects of reverberation on radiated sound are of major importance in hearing,
as they represent every possible degree of coherence that has to be dealt with by the hearing
system. Stationary signals are of rather limited usefulness in everyday listening, especially when
information transfer is considered, which contains modulations that can be on the temporal scale of
the temporal �uctuations of the �eld itself. When the sound source is continuous but nonstationary,
�fresh� direct sound is continuously mixed with the early and late re�ections of previously emitted
sound. In this case, if the source is highly coherent, the early re�ections are dominant, and the source
variation is rapid, then new and old information from the source can interfere and make any message
communication di�cult. Also, when the reverberation time is long�its energy decays slowly�it
produces an approximately constant intensity level that �washes out� or reduces the contrast of fresh
acoustic information (or the modulation depth in amplitude modulation; Houtgast and Steeneken,
1973).

A few examples for some of the above e�ects are provided in �A. In brief, they illustrate how
realistic room acoustics produces a partially coherent �eld that varies in time, space, and frequency,
and depends on the acoustic content of the source and on the reverberant space. The analysis also

82It is common to distinguish between specular and di�use re�ectors in this context. Specular re�ections tend to be
coherent, as they may give rise to interference between the incident and re�ected sounds. The re�ectors are usually
hard and �at surfaces with no discontinuities. In contrast, a di�use re�ector (a di�user) is designed to emulate
a more randomized phase response as much as possible and thereby decohere the re�ected sound and minimize
interference e�ects. It therefore attempts to maximize the surface geometrical randomness and discontinuities in
order to decohere the impinging �eld. Cox and D'Antonio (2005, p. 30�31) noted that strictly speaking all passive
re�ectors are coherent, because they are time invariant and deterministic. They additionally noted that the e�ect of
di�users is then better thought of as temporal and spatial dispersion of the �eld and not of decoherence.
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demonstrates how typical signals are generally nonstationary and it is often not straightforward to
predict how a signal is a�ected by reverberation in a �eld that is not ideally di�use. Nevertheless,
statistical e�ects that are predicted for stationary sounds in di�use �elds are occasionally observed,
locally.

8.5 Interaural coherence

We will be remiss without mentioning the binaural function, which can be readily included in the
general framework of coherence theory. Interaural cross-correlation between the two ear signals has
been originally proposed by Licklider (1948) as a means to separate speech from broadband noise
that the hearing system employs. Diotic speech intelligibility signi�cantly improved when either the
noise or the speech was out of phase between the two ears, while the other was in phase. The
advantage was retained for partial coherence of the noise γ(R, 0) ≤ −0.75 for in-phase speech or
γ(R, 0) ≥ 0.75 when it was out of phase, where we set R = |r1 − r2| to be the �xed distance
between the two ears of the listener. Another e�ect is of the perceived size of the acoustic source�
its apparent source width in the listener's �phenomenal space��turns out to also be a function
of the interaural coherence (Licklider, 1948). It was shown to be a quantity that listeners are very
sensitive to (down to the |γ| = 0.1 level; Je�ress et al., 1962). Other e�ects can be at least partially
explained by interaural correlation, such as perceived binaural loudness, binaural beats, and the
binaural �Huggins� pitch.

The spatial coherence function of the head interacts with the room acoustics. Lindevald and
Benade (1986) presented coherence data of a person walking in a reverberant �eld (T60 ≈ 1 s) of
a large lecture hall (V = 1000 m3) that had a loudspeaker playing sinusoidal tones. The interaural
coherence was clearly a�ected by the head shadow and the two ear signals became incoherent at a
frequency as low as 500 Hz (the �rst zero of a sinc function). When the measurement was repeated
for two microphones spaced as the two ears (R = 15 cm), the �rst zero was reached at 1100 Hz,
so the response was more coherent. Thus, the head has a measurable spatially decohering e�ect on
the sound �eld.

Binaural research has not formally engaged with coherence theory beyond the interaural-correlation.
The one (informal) exception to this is Cohen (1988), who proposed that the interaural function is,
in fact, an interferometer (see also Dietz and Ashida, 2021). This idea can be readily developed us-
ing the theory we presented earlier in the chapter. In principle, the classical duplex cues for binaural
localization�interaural time di�erence (ITD) and interaural level di�erence (ILD) (Rayleigh,
1907b)�may be recast as elements within the interaural coherence function. The ILD relates to
the level di�erence, which leads to partial incoherence and audibility of less than unity (Eq. 8.19).

The ITD relates to delay�a constant phase term in the cross-term of the coherence function
(i.e., δ in Eqs. 8.13 and 8.14). Substantial e�orts have been dedicated to modeling physiological
mechanisms that ful�ll the role of coincidence detectors�neurons with two excitatory inputs that
�re only when the binaural inputs are synchronized and perform an instantaneous cross-correlation
operation. It has been proposed that coincidence detectors are accompanied by matching signal
processing that can extract the necessary information (Je�ress, 1948; Licklider, 1951b; Colburn,
1973, 1977; Loeb et al., 1983; Shamma et al., 1989). While in reality the interactions and deviations
from such a clean interpretation of the binaural operation are messy (e.g., Buchholz et al., 2018),
there is recent physiological evidence from simultaneous juxtacellular recordings that the simple
coincidence model may be su�cient to explain ITDs (Plau²ka et al., 2016). Regardless of the
precise mechanism for computing the correlation, the e�ectiveness of using it to predict binaural
unmasking has been found to be very high, for a host of listening stimuli and conditions (Encke and
Dietz, 2022).
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8.6 Coherence processing in the brain

Several models of pitch and harmonicity perception hypothesized brainstem circuitry that contains
coincidence detectors that are not necessarily used in binaural processing. The important aspect
about their operation is that they more-or-less instantaneously respond to input coherence, which
means that their operation is adapted to nonstationary coherence by de�nition.

For example, Loeb et al. (1983) posited a cross-correlation function, explicitly within the brainstem�
in particular in the medial superior olive (MSO)�that can work either monaurally or binaurally.
According to this model, the spectral resolution of the ear can be explained using coincidence de-
tectors that receive inputs from channels whose spectral distance corresponds to 0.3�0.4 of the
respective wavelength on the basilar membrane. This model does not resort to delay lines�a signal
processing component that was hypothesized by Je�ress (1948) that may be valid in birds, but
probably not in mammals (Grothe et al., 2010). Shamma and Klein (2000) hypothesized that a
matrix of coincidence detectors may be responsible for harmonicity perception and various types of
pitch (periodicity and residue), which are not easily explained without a cross-correlation setup that
includes delay lines (for which there is no clear evidence). The model requires phase locking (see
�9.7.2) and distortion products (obtained through squaring) to have the information necessary for
synchronization within the channel. It also hypothesizes spectral and temporal sharpening and that
the inherent dispersion between the channels is necessary for eliciting their synchronization later
in processing, regardless of the signal type. A related model by Carney et al. (2002) proposed a
coincidence detector network that can detect pitch in noise. The network comprises all the adjacent
channels that are a�ected by the stimulus and individually phase lock. Roughly, the idea here is
that when sound elements coincide, they add up coherently and produce a sharp frequency response,
whereas the noise is broad and does not add cumulatively to the sharpness of its spectrum. The
model requires for speci�c phase relations to exist between adjacent channels. As a �nal example,
the model by Langner (2015) identi�ed periodicity mapping (periodopy) at the central nucleus of
inferior colliculus (ICC), which is orthogonal to its tonotopy. In this model, the unique mesh-like
topology of ICC neurons enables them to work as coincidence detectors for spikes that arrive from
the dorsal and ventral cochlear nuclei (delayed), and the ventral nucleus of the lateral lemniscus
(inhibition) (see Figures in Langner, 2015, pp. 129 and 168).

8.7 Discussion

Basic principles of coherence theory that are germane to acoustics and hearing science were reviewed
above. While perhaps none of the ideas presented in this chapter are new to the �eld, they have
never been presented en masse in this context in a comprehensive and rigorous manner. Nevertheless,
acoustic coherence is intimately related to the identity of sound sources, which the auditory system
can detect and react to. Later in this work, it will become apparent that the auditory system is
inherently set up to di�erentially process coherent and incoherent stimuli, so the basic distinction
between them is critical. Because every partially-coherent stimulus can be expressed as a sum of
coherent and incoherent components, such a decomposition potentially endows the system with a
unique handle to identify and process di�erent sound sources.

The review dwelt on room acoustic e�ects, which were originally described using stationary
signals in di�use sound �elds. These are generally not representative of most common acoustic
stimuli, as was demonstrated in �8.3.2 and �A for a handful of human and musical sources. As these
signals arrive to the outer ear and propagate to the cochlea via the middle ear, it can be expected
that their coherence function will vary within the ear as well, albeit only slightly due to the very
small distances involved. Things are more complex inside the cochlea because of dispersion, phase
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locking, and discretization, as will be discussed in subsequent chapters.
It is important to make a distinction between signal processing that requires coherence detection

as part of the computation and coherence that is propagated within the system, which represents an
inherent property of the signal. Coincidence detectors are of the �rst kind, whereas other references
to coherence in the brain (e.g., temporal self-coherence or autocorrelation) may be a propagated
property of the second kind. The latter is the most important type of coherence in the present
context, because it is an inherent feature of the signal that directly corresponds to its wave nature.
Removing coherence from the signal is tantamount to removing some information that it carries
about its source. Therefore, for coherence to not propagate into the auditory brain may be just as
nontrivial a processing step as the opposite case. In the next chapter we will focus mainly on phase
locking as a feature that facilitates coherence propagation.
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